精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,PA⊥平面ABCDABADACCD,∠ABC=60°,PAABBCEPC的中点.证明:

(1)CDAE

(2)PD⊥平面ABE.

【答案】(1)详见解析;(2)详见解析.

【解析】

(1)关键证明CD⊥平面PAC,(2)关键证明AEPDABPD

证明:(1)在四棱锥中,

PA⊥平面ABCDCD平面ABCD

PACD.∵ACCDPA∩ACA

CD⊥平面PAC.

AE平面PAC,∴CDAE.

(2)由PAABBCABC60°,可得ACPA.

EPC的中点,∴AEPC.

由(1)知AECD,且PC∩CDC

AE⊥平面PCD.

PD平面PCD,∴AEPD.

PA⊥平面ABCD,∴PAAB.

又∵ABADPA∩ADA

AB⊥平面PAD,而PD平面PAD

ABPD.

又∵AB∩AEA

PD⊥平面ABE.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某超市为调查会员某年度上半年的消费情况制作了有奖调查问卷发放给所有会员,并从参与调查的会员中随机抽取名了解情况并给予物质奖励.调查发现抽取的名会员消费金额(单位:万元)都在区间内,调查结果按消费金额分成组,制作成如下的频率分布直方图.

(1)求该名会员上半年消费金额的平均值与中位数;(以各区间的中点值代表该区间的均值)

(2)现采用分层抽样的方式从前组中选取人进行消费爱好调查,然后再从前组选取的人中随机选人,求这人都来自第组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年开始,我省将试行“3+1+2“的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目.为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图.甲同学的成绩雷达图如图所示,下面叙述一定不正确的是(  )

A.甲的物理成绩领先年级平均分最多

B.甲有2个科目的成绩低于年级平均分

C.甲的成绩从高到低的前3个科目依次是地理、化学、历史

D.对甲而言,物理、化学、地理是比较理想的一种选科结果

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当,且上的增函数,求实数的取值范围;

2)当,且对任意实数,关于的方程总有三个不相等的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为。斜率为1的直线与椭圆交于两点,以为底边作等腰三角形,顶点为

1)求椭圆的方程;

2)求的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在坐标原点,焦点在轴上,且过,直线与椭圆交于,两点(,两点不是左右顶点),若直线的斜率为时,弦的中点在直线上.

(Ⅰ)求椭圆的方程.

(Ⅱ)若以,两点为直径的圆过椭圆的右顶点,则直线是否经过定点,若是,求出定点坐标,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于任意的,总存在,使得恒成立,则实数的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数.

(1)求的单调区间;

(2)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,边上的中线长为,则的面积是____

查看答案和解析>>

同步练习册答案