【题目】已知圆和直线,直线, 都经过圆外定点.
(1)若直线与圆相切,求直线的方程;
(2)若直线与圆相交于两点,与交于点,且线段的中点为,
求证: 为定值.
【答案】(1), ;(2)证明见解析.
【解析】试题分析:(1)①当直线的斜率不存在,即直线是成立,②若直线斜率存在,设直线为,由圆心到直线的距离等于半径求解;(2)直线与曲线联立可得,根据韦达定理,弦长公式将
用 表示,消去 即可得结果.
试题解析:(1)①若直线的斜率不存在,即直线是,符合题意.
②若直线斜率存在,设直线为,即.
由题意知,圆心(3,4)到已知直线的距离等于半径2,
即: ,解之得 .
所求直线方程是, .
(2)解法一:直线与圆相交,斜率必定存在,且不为0,
可设直线方程为
由 得.
再由
得.
∴ 得.
∴
为定值.
解法二:直线与圆相交,斜率必定存在,且不为0,可设直线方程为
由 得. 8分
又直线CM与垂直,
由 得.
∴
,为定值.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|cosx|sinx,给出下列四个说法:
①f(x)为奇函数; ②f(x)的一条对称轴为x= ;
③f(x)的最小正周期为π; ④f(x)在区间[﹣ , ]上单调递增;
⑤f(x)的图象关于点(﹣ ,0)成中心对称.
其中正确说法的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,左、右焦点分别为圆, 是上一点, ,且.
(1)求椭圆的方程;
(2)当过点的动直线与椭圆相交于不同两点时,线段上取点,且满足,证明点总在某定直线上,并求出该定直线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com