精英家教网 > 高中数学 > 题目详情

【题目】已知圆和直线,直线 都经过圆外定点

1)若直线与圆相切,求直线的方程;

2)若直线与圆相交于两点,与交于点,且线段的中点为

求证: 为定值.

【答案】(1) ;(2)证明见解析.

【解析】试题分析:1①当直线的斜率不存在,即直线是成立,②若直线斜率存在,设直线,由圆心到直线的距离等于半径求解;(2)直线与曲线联立可得,根据韦达定理,弦长公式将

表示,消去 即可得结果.

试题解析:(1)①若直线的斜率不存在,即直线是,符合题意.

②若直线斜率存在,设直线,即

由题意知,圆心(3,4)到已知直线的距离等于半径2,

即: ,解之得

所求直线方程是

(2)解法一:直线与圆相交,斜率必定存在,且不为0,

可设直线方程为

再由

为定值.

解法二:直线与圆相交,斜率必定存在,且不为0,可设直线方程为

. 8分

又直线CM与垂直,

,为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,,平面平面分别为中点.

(Ⅰ)求证:平面

(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|cosx|sinx,给出下列四个说法:
①f(x)为奇函数; ②f(x)的一条对称轴为x=
③f(x)的最小正周期为π; ④f(x)在区间[﹣ ]上单调递增;
⑤f(x)的图象关于点(﹣ ,0)成中心对称.
其中正确说法的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)讨论函数的单调性;

(2)如果对所有的,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点

(Ⅰ)当直线过点且与圆心的距离为时,求直线的方程.

(Ⅱ)设过点的直线与⊙交于 两点,且,求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a为实数,函数f(x)=x3﹣x2﹣x+a,若函数f(x)过点A(1,0),求函数在区间[﹣1,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+ (a>1)
(1)证明:函数f(x)在(﹣1,+∞)上为增函数;
(2)用反证法证明f(x)=0没有负数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左、右焦点分别为圆 上一点, ,且

(1)求椭圆的方程;

(2)当过点的动直线与椭圆相交于不同两点时,线段上取点,且满足,证明点总在某定直线上,并求出该定直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角A,B,C的对边分别为a,b,c,且满足.

(1)求角B的大小;

(2)若点MBC中点,且AM=AC=2,求a的值.

查看答案和解析>>

同步练习册答案