| A. | $\frac{\sqrt{10}}{5}$ | B. | $\sqrt{3}$+1 | C. | $\frac{\sqrt{10}}{2}$ | D. | $\sqrt{5}$+1 |
分析 判断出E为PF的中点,据双曲线的特点知原点O为两焦点的中点;利用中位线的性质,运用双曲线的定义,求出PF′的长度及判断出PF′垂直于PF;通过勾股定理得到a,c的关系,求出双曲线的离心率.
解答 解:设右焦点为F',![]()
若$\overrightarrow{OE}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OP}$),且$\overrightarrow{OE}$•$\overrightarrow{EF}$=0,
可得E为FP的中点,且OE⊥PF,
作倾斜角为$\frac{π}{6}$的直线FE交该双曲线右支于点P,
可得OE=$\frac{1}{2}$OF=$\frac{1}{2}$c,
由中位线定理可得Rt△PFF′中,
则PF′=2OE=c,
且PF′⊥PF
∵PF-PF′=2a,
∴PF=PF′+2a=2a+c,
在Rt△PFF′中,PF2+PF′2=FF′2
即(2a+c)2+c2=4c2,
化为2a=($\sqrt{3}$-1)c,
离心率e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1,
故选:B.
点评 本题主要考查双曲线的定义和简单性质:离心率等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,在圆锥曲线中,求离心率关键就是求三参数a,b,c的关系,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 24 | B. | 36 | C. | 16 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈z)$ | B. | $[kπ-\frac{π}{6},kπ+\frac{π}{3}](k∈Z)$ | ||
| C. | $[kπ-\frac{π}{12},kπ+\frac{5π}{12}](k∈Z)$ | D. | $[kπ-\frac{5π}{12},kπ+\frac{π}{12}](k∈z)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com