精英家教网 > 高中数学 > 题目详情
8.已知数列{an}的前n项和Sn=2n2+n,函数f(x)=${∫}_{1}^{x}\frac{1}{t}$dt,若f(x)<a3,则x的取值范围是(  )
A.($\frac{\sqrt{3}}{6}$,+∞)B.(0,e21C.(e-11,e)D.(0,e11

分析 首先由已知数列的前n项和求出通项公式,进一步得到a3,利用定积分求出f(x),然后解不等式求x范围.

解答 解:由已知数列{an}的前n项和Sn=2n2+n,所以Sn-1=2(n-1)2+n-1,n>1,an=4n-1,a1=3满足,
所以an=4n-1,所以a3=11,
函数f(x)=${∫}_{1}^{x}\frac{1}{t}$dt=lnx,由f(x)<a3,得到lnx<11,解得0<x<e11
故选:D.

点评 本题考查了数列的通项公式的求法、定积分以及对数不等式的解法;知识点较多,但是比较简单.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.当P为何值时,不等式$\frac{{x}^{2}+px-2}{{x}^{2}-x+1}$<2对任意实数x恒成立?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\left\{\begin{array}{l}{x+1,x≤-2}\\{\stackrel{{x}^{2}+2x,-2<x<2}{2x-1,x≥2}}\end{array}\right.$
(1)求f(-5),f(-$\sqrt{3}$),f[f(-$\frac{5}{2}$)]的值;
(2)若f(a)=3,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\left\{\begin{array}{l}{2,x≥0}\\{1,x<0}\end{array}\right.$,设函数g(x)=$\frac{3f(x-1)-f(x-2)}{2}$(x>0),求函数g(x)的值域并画出该函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)写出函数y=x2-2x的单调区间及其图象的对称轴,观察:在函数图象对称轴两侧的单调性有什么特点?
(2)写出函数y=|x|的单调区间及其图象的对称轴,观察:在函数图象的对称轴两侧的单调性有什么特点?
(3)定义在[-4,8]上的函数y=f(x)的图象关于直线x=2对称,y=f(x)的部分图象如图所示.请补全函数y=f(x)的图象,并写出其单调区间,观察:在函数图象对称轴两侧的单调性有什么特点?
(4)由以上你发现了什么结论?(不需要证明)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直线y=kx+$\sqrt{2}$与椭圆$\frac{{x}^{2}}{3}$+y2=1交于不同两点A,B,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=1(其中0为坐标原点),则k=±$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在以v千米/小时的速度向东航行的科学探测船上释放了一个探测热气球,气球顺风与船同向,以2千米/小时的速度沿与水平方向成60°直线方向向上飘去,2小时后测得探测船与气球的距离为2$\sqrt{7}$千米,之后热气球沿水平方向仍以2千米/小时的速度飞行1小时,第二次测得探测船与热气球的距离为s千米.如图.
(1)求探测船的速度v(千米/小时);
(2)求第二次测距离时,从探测船位置观察热气球时,仰角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\left\{\begin{array}{l}{{a}^{x},x≤5}\\{f(x-2),x>5}\end{array}\right.$(a>0,且a≠1),f(8)=16,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=4x2-4mx+m2-2m+2(m∈R)在区间[0,2]上的最小值是5,求m的值.

查看答案和解析>>

同步练习册答案