精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=$\left\{\begin{array}{l}{2,x≥0}\\{1,x<0}\end{array}\right.$,设函数g(x)=$\frac{3f(x-1)-f(x-2)}{2}$(x>0),求函数g(x)的值域并画出该函数的图象.

分析 根据函数的性质,求出函数g(x)的解析式,需要分段讨论,最后画出函数的图象即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}{2,x≥0}\\{1,x<0}\end{array}\right.$,
∴函数g(x)=$\frac{3f(x-1)-f(x-2)}{2}$=$\left\{\begin{array}{l}{1,0<x<1}\\{\frac{5}{2},1≤x<2}\\{2,x≥2}\end{array}\right.$,
∴函数的值域为{1,2,$\frac{5}{2}$}
函数的图象为:

点评 本题考查了函数的解析式以及函数图象的画法,关键是分段讨论,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.分式$\frac{6x+7}{1-x}$,当x取何值时分式为正,当x取何值时,分式值为负?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.讨论函数f(x)=$\frac{ax+1}{x+2}$(a≠$\frac{1}{2}$)在(-2,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知定义在R上的奇函数g(x)满足g(x+2)=-g(x),且当0≤x≤1时,g(x)=log2(x+a).
(1)求a的值以及g(x)在[-2,-1]上的解析式;
(2)若关于x的不等式g($\frac{t-{2}^{x}}{8+{2}^{x+3}}$)≥1-log23在R上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数y=f(x)的图象过点(1,2),则y=f(x+1)的图象过点(  )
A.(1,2)B.(2,2)C.(0,2)D.(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知等腰Rt△A0B内接于抛物线x2=ay(a≠0),0为坐标原点,且OA⊥OB,△AOB的周长为4,则a的值为2-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}的前n项和Sn=2n2+n,函数f(x)=${∫}_{1}^{x}\frac{1}{t}$dt,若f(x)<a3,则x的取值范围是(  )
A.($\frac{\sqrt{3}}{6}$,+∞)B.(0,e21C.(e-11,e)D.(0,e11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)是一次函数,且满足3f(x+1)=6x+9,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=|log2(ax)|在x∈[$\frac{1}{4}$,2]上的最大值为M(a),则M(a)的最小值是(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案