| A. | sinx | B. | -sinx | C. | cosx | D. | -cosx |
分析 求出f1(x)=f0′(x)=-sinx,f2(x)=f1′(x)=-cosx,f3(x)=f2′(x)=sinx,f4(x)=f3′(x)=cosx…从第五项开始,fn(x)的解析式重复出现,每4次一循环,由此能求出f2016(x)的值.
解答 解:∵设f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x)(n∈N),
∴∵f0(x)=cosx,
∴f1(x)=f0′(x)=-sinx,
f2(x)=f1′(x)=-cosx,
f3(x)=f2′(x)=sinx,
f4(x)=f3′(x)=cosx
…
从第五项开始,fn(x)的解析式重复出现,每4次一循环.
∴f2016(x)=f4×504(x)=f0(x)=cosx,
故选:C.
点评 本题考查导数性质的应用,是中档题,解题时要认真审,注意三角函数性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | af(a)<bf(b) | B. | af(b)<bf(a) | C. | af(a)>bf(b) | D. | af(b)>bf(a) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -i | B. | -1 | C. | i | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${\vec e_1}=(1,1)$与${\vec e_2}=(2,0)$ | B. | ${\vec e_1}=(1,1)$与${\vec e_2}=(2,2)$ | ||
| C. | ${\vec e_1}=(1,2)$与${\vec e_2}=(4,8)$ | D. | ${\vec e_1}=(-1,2)$与${\vec e_2}=(1,-2)$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com