精英家教网 > 高中数学 > 题目详情
1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,短轴的一个端点为M(0,1),过椭圆左顶点A的直线l与椭圆的另一交点为B.
(1)求椭圆的方程;
(2)若l与直线x=a交于点P,求$\overrightarrow{OB}$•$\overrightarrow{PO}$的值;
(3)若|AB|=$\frac{4}{3}$,求直线l的倾斜角.

分析 (1)根据椭圆的几何性质求出a、b的值即可;
(2)设出直线l的方程,根据题意求出B、P的坐标,计算$\overrightarrow{OB}$•$\overrightarrow{OP}$的值即可;
(3)讨论直线l的斜率不存在和存在时,利用直线l的方程与椭圆的方程联立,消去y,利用弦长公式求出直线的斜率k,从而求出倾斜角的大小.

解答 解:(1)∵椭圆的离心率为e=$\frac{c}{a}$=$\sqrt{1-\frac{{b}^{2}}{{a}^{2}}}$=$\frac{\sqrt{2}}{2}$,且b=1,
∴a2=2,b2=1,
∴椭圆的方程为$\frac{x^2}{2}+{y^2}=1$;
(2)由(1)可知点$A(-\sqrt{2},0)$,
设B(x0,y0),则直线l的方程为:y=$\frac{{y}_{0}}{{x}_{0}+\sqrt{2}}$(x+$\sqrt{2}$);
令$x=\sqrt{2}$,解得$y=\frac{{2\sqrt{2}{y_0}}}{{{x_0}+\sqrt{2}}}$,即$P(\sqrt{2},\frac{{2\sqrt{2}{y_0}}}{{{x_0}+\sqrt{2}}})$,
∴$\overrightarrow{OB}•\overrightarrow{OP}=({x_0},{y_0})•(\sqrt{2},\frac{{2\sqrt{2}{y_0}}}{{{x_0}+\sqrt{2}}})=\frac{{\sqrt{2}(x_0^2+2y_0^2)+2{x_0}}}{{{x_0}+\sqrt{2}}}$;
又∵B(x0,y0)在椭圆上,则$x_0^2+2y_0^2=2$,
∴$\overrightarrow{OB}•\overrightarrow{OP}=2$;
(3)当直线l的斜率不存在时,不符合题意;
当直线l的斜率存在时,设其为k,则直线l的方程为:y=k(x+$\sqrt{2}$);
由$\left\{\begin{array}{l}{{x}^{2}+{2y}^{2}-2=0}\\{y=k(x+\sqrt{2})}\end{array}\right.$可得,$(2{k^2}+1){x^2}+4\sqrt{2}{k^2}x+(4{k^2}-2)=0$,
由于△=8>0,设A(x1,y1),B(x2,y2)可得,
${x_1}+{x_2}=-\frac{{4\sqrt{2}{k^2}}}{{2{k^2}+1}}$,${x_1}{x_2}=\frac{{4{k^2}-2}}{{2{k^2}+1}}$;
∴|AB|=$\sqrt{1{+k}^{2}}$|x1-x2|
=$\sqrt{1{+k}^{2}}$•$\sqrt{{{(x}_{1}{+x}_{2})}^{2}-{{4x}_{1}x}_{2}}$
=$\sqrt{{(-\frac{4{\sqrt{2}k}^{2}}{{2k}^{2}+1})}^{2}-4•\frac{{4k}^{2}-2}{{2k}^{2}+1}}$
=$\frac{4}{3}$,
解得k=±1;
∴直线l的倾斜角为$\frac{π}{4}$或$\frac{3π}{4}$.

点评 本题考查了椭圆的几何性质与应用问题,也考查了直线与椭圆方程以及平面向量的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.将函数f(x)=sin(2x+φ)(-$\frac{π}{2}$<φ<$\frac{π}{2}$)的图象沿x轴向左平移$\frac{π}{8}$个单位后,得到一个偶函数的图象,则φ的值为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某城市理论预测2000年到2004年人口总数与年份的关系如表所示
年份200x(年)01234
人口数 y (十万)5781119
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(Ⅲ)据此估计2005年该城市人口总数.
参考数值:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30,
参考公式:用最小二乘法求线性回归方程系数公式 $\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a$=(3,4),$\overrightarrow b$=(sinα,cosα),且$\overrightarrow a$∥$\overrightarrow b$,则tan(α+$\frac{π}{4}$)=7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设y=f″(x)是y=f′(x)的导数.某同学经过探究发现,任意一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有对称中心(x0,f(x0)),其中x0满足f″(x0)=0.已知f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,则f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+f($\frac{3}{2017}$)+…+f($\frac{2016}{2017}$)=(  )
A.2013B.2014C.2015D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知动圆M过定点P(1,0),且与直线x=-1相切.
(1)求动圆圆心M的轨迹C的方程;
(2)设A、B是轨迹C上异于原点O的两点,且$\overrightarrow{OA}•\overrightarrow{OB}$=0,求证:直线AB过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.由1,$\frac{1}{3}$,$\frac{9}{35}$,$\frac{17}{63}$,$\frac{33}{99}$,…,归纳猜想第n项为$\frac{{2}^{n}+1}{(2n-1)(2n+1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x)(n∈N),则f2016(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知全集U={x∈N|1≤x≤6},集合A={x|x2-6x+8=0},集合B={3,4,5,6}.
(1)求A∩B,A∪B;
(2)写出集合(∁UA)∩B的所有子集.

查看答案和解析>>

同步练习册答案