| A. | 2013 | B. | 2014 | C. | 2015 | D. | 2016 |
分析 结合题意求导可得f″(x)=2x-1,从而可求出($\frac{1}{2}$,1)是f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$的对称中心; 从而利用对称性求得f($\frac{1}{2017}$)+f($\frac{2016}{2017}$)=2,f($\frac{2}{2017}$)+f($\frac{2015}{2017}$)=2,…,从而求得.
解答 解:∵f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$,
∴f′(x)=x2-x+3,
∴f″(x)=2x-1,
令f″(x)=2x-1=0解得,
x=$\frac{1}{2}$,f($\frac{1}{2}$)=1,
由题意知,
($\frac{1}{2}$,1)是f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+3x-$\frac{5}{12}$的对称中心;
故f($\frac{1}{2017}$)+f($\frac{2016}{2017}$)=2,
f($\frac{2}{2017}$)+f($\frac{2015}{2017}$)=2,
…,
故f($\frac{1}{2017}$)+f($\frac{2}{2017}$)+f($\frac{3}{2017}$)+…+f($\frac{2016}{2017}$)=2016,
故选D.
点评 本题考查了学生的学习与应用能力,同时考查了导数的综合应用及整体思想的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{e}$) | B. | ($\frac{1}{e}$,+∞) | C. | (e,+∞) | D. | (0,e) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(-3)+f(2)>0 | B. | f(-3)+f(2)<0 | C. | f(-3)+f(2)=0 | D. | f(-3)-f(2)<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com