分析 (Ⅰ)利用正弦定理可将acosA=bcosB转化为sinAcosA=sinBcosB,再利用二倍角的正弦与三角形的性质计算即可.
(Ⅱ)利用△ABC面积为$\frac{\sqrt{3}}{2}$,c=2,A=60°,直接求出b,通过余弦定理求出a的值即可.
解答 解:(Ⅰ)∵acosA=bcosB,
∴由正弦定理得:sinAcosA=sinBcosB,即sin2A=sin2B,
∵0<A,B<π,
∴2A=2B或2A=π-2B,即A=B或A+B=$\frac{π}{2}$.
∴△ABC为等腰三角形或直角三角形.
(Ⅱ)∵△ABC面积为$\frac{{\sqrt{3}}}{2},c=2,A=60°$,
∴$\frac{\sqrt{3}}{2}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}$bcsin60°=$\frac{\sqrt{3}}{2}$b,
∴b=1,
由余弦定理可得,a2=b2+c2-2bccosA=1+4-4×$\frac{1}{2}$=3.
∴a=$\sqrt{3}$.
点评 本题考查三角形的形状判断,考查正弦定理、余弦定理、三角形的面积公式的应用,考查计算能力,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份200x(年) | 0 | 1 | 2 | 3 | 4 |
| 人口数 y (十万) | 5 | 7 | 8 | 11 | 19 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2013 | B. | 2014 | C. | 2015 | D. | 2016 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{5}$+y2=1 | B. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1 | ||
| C. | $\frac{{x}^{2}}{5}$+y2=1或$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1 | D. | 以上答案都不对 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com