精英家教网 > 高中数学 > 题目详情
12.对于双曲线C有命题:若双曲线C的标准方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),则双曲线C的渐近线是bx±ay=0.该命题的逆命题是若双曲线C的渐近线是bx±ay=0,则双曲线C的标准方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0);判断该命题的真假为假.

分析 根据逆命题的写法,即可得出结论.

解答 解:若双曲线C的渐近线是bx±ay=0,则双曲线C的标准方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),是假命题.
故答案为:若双曲线C的渐近线是bx±ay=0,则双曲线C的标准方程是$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0);假.

点评 本题考查逆命题,考查命题的真假判断,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.在一段时间内,某种商品价格x(万元)和需求量y(t)之间的一组数据为:
价 格x1.41.61.822.2
需求量y1210753
(1)进行相关性检验;
(2)如果x与y之间具有线性相关关系,求出回归直线方程,并预测当价格定为1.9万元,需求量大约是多少?(精确到0.01t)
参考公式及数据:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sqrt{(\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2})(\sum_{i=1}^{n}{y}_{i}^{2}-n{\overline{y}}^{2})}}$,$\sqrt{21.28}$≈4.61,$\sum_{i=1}^5{{x_i}{y_i}}$=62   $\sum_{i=1}^5{{x_i}^2}$=16.6  $\sum_{i=1}^5{{y_i}^2}$=327
相关性检验的临界值表:
n-212345678910
小概率0.011.0000.9900.9590.9170.8740.8340.7980.7650.7350.708

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知命题p:|x-4|≤6,q:x2-m2-2x+1≤0(m>0),若¬p是¬q的必要不充分条件,则实数m的取值范围为[9,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=$\frac{lnx}{x}$的单调递减区间是(  )
A.(0,$\frac{1}{e}$)B.($\frac{1}{e}$,+∞)C.(e,+∞)D.(0,e)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点D(-2,0)为椭圆C的左顶点,点D与椭圆C的短轴端点的距离为$\sqrt{5}$,过点M(1,0)的直线l与椭圆C交于A,B两点.
(1)求椭圆C的标准方程;
(2)是否存在直线l,使得$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{MB}$,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-(1+a)x-1,g(x)=-$\frac{lnx}{x}$-a(x+1),其中a∈R
(1)若函数f(x)在其定义域上不是单调函数,求实数a的取值范围
(2)如果函数p(x),q(x)在公共定义域D上满足p(x)<q(x),那么就称p(x)为q(x)的“底下函数”.证明:当a<1时,f(x)为g(x)的“底下函数”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知i为虚数单位,$(2+i)\overline z=-1+2i$,则复数z=(  )
A.iB.-iC.$\frac{4}{3}+i$D.$\frac{4}{3}-i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b,c分别是△ABC的三个内角A、B、C的对边.
(Ⅰ)若acosA=bcosB,试判断△ABC的形状.
(Ⅱ)若△ABC面积为$\frac{{\sqrt{3}}}{2},c=2,A=60°$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{x+2}$-$\frac{1}{x-3}$.
(1)求函数y=f(x)的定义域;
(2)若函数y=f(x)+a在区间(-2,2)上有且仅有一个零点,求实数a的取值范围.

查看答案和解析>>

同步练习册答案