分析 (1)根据式子有意义列出不等式组解出即可;
(2)判断出f(x)在(-2,2)上的单调性,根据零点的存在性定理列不等式解出a的范围.
解答 解:(1)由函数式子有意义得$\left\{\begin{array}{l}{x+2≥0}\\{x-3≠0}\end{array}\right.$,
解得x≥-2且x≠3,
∴f(x)的定义域为:{x|-2≤x<3或x>3}
(2)∵f(x)=$\sqrt{x+2}$-$\frac{1}{x-3}$+a在(-2,2)上是增函数,
且在区间(-2,2)上有且仅有一个零点,
∴f(-2)•f(2)<0,即($\frac{1}{5}$+a)(3+a)<0,
解得-3$<a<-\frac{1}{5}$.
点评 本题考查了函数定义域,函数零点的存在性定理,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2013 | B. | 2014 | C. | 2015 | D. | 2016 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{5}$+y2=1 | B. | $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1 | ||
| C. | $\frac{{x}^{2}}{5}$+y2=1或$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{5}$=1 | D. | 以上答案都不对 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com