精英家教网 > 高中数学 > 题目详情
12.某城市理论预测2000年到2004年人口总数与年份的关系如表所示
年份200x(年)01234
人口数 y (十万)5781119
(Ⅰ)请画出上表数据的散点图;
(Ⅱ)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(Ⅲ)据此估计2005年该城市人口总数.
参考数值:0×5+1×7+2×8+3×11+4×19=132,02+12+22+32+42=30,
参考公式:用最小二乘法求线性回归方程系数公式 $\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}},\hat a=\overline y-\hat b\overline x$.

分析 (1)根据表格描点即可;
(2)利用回归系数公式计算回归系数,得出回归方程;
(3)利用回归方程估计x=5时的函数值即可.

解答 解:(1)作出散点图如图所示:

(2)$\overline{x}$=$\frac{1+2+3+4}{5}$=2,$\overrightarrow{y}$=$\frac{5+7+8+11+19}{5}$=10.
$\stackrel{∧}{b}$=$\frac{132-5×2×10}{30-5×{2}^{2}}$=3.2,$\stackrel{∧}{a}$=10-3.2×2=3.6.
∴y关于x的线性回归方程为:$\stackrel{∧}{y}$=3.2x+3.6.
(3)当x=5时,$\stackrel{∧}{y}$=3.2×5+3.6=19.6.
∴2005年该城市人口总数约为196万.

点评 本题考查了线性回归方程的求解即应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.阅读如图所示的程序框图,运行相应的程序,输出的结果为(  )
A.506B.462C.420D.380

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-(1+a)x-1,g(x)=-$\frac{lnx}{x}$-a(x+1),其中a∈R
(1)若函数f(x)在其定义域上不是单调函数,求实数a的取值范围
(2)如果函数p(x),q(x)在公共定义域D上满足p(x)<q(x),那么就称p(x)为q(x)的“底下函数”.证明:当a<1时,f(x)为g(x)的“底下函数”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的函数f(x),f(x)+x•f′(x)<0,若a<b,则一定有(  )
A.af(a)<bf(b)B.af(b)<bf(a)C.af(a)>bf(b)D.af(b)>bf(a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知a,b,c分别是△ABC的三个内角A、B、C的对边.
(Ⅰ)若acosA=bcosB,试判断△ABC的形状.
(Ⅱ)若△ABC面积为$\frac{{\sqrt{3}}}{2},c=2,A=60°$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若两圆x2+y2=1和(x+4)2+(y-a)2=25有三条公切线,则常数a=±2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.i+i2+i3+i4+…+i2016=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,短轴的一个端点为M(0,1),过椭圆左顶点A的直线l与椭圆的另一交点为B.
(1)求椭圆的方程;
(2)若l与直线x=a交于点P,求$\overrightarrow{OB}$•$\overrightarrow{PO}$的值;
(3)若|AB|=$\frac{4}{3}$,求直线l的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,Rt△O′A′B′是△OAB的斜二测直观图,斜边O′A′=2,则△OAB的面积是(  )
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

同步练习册答案