精英家教网 > 高中数学 > 题目详情
20.下列各组平面向量中可以作为基底的一组是(  )
A.${\vec e_1}=(1,1)$与${\vec e_2}=(2,0)$B.${\vec e_1}=(1,1)$与${\vec e_2}=(2,2)$
C.${\vec e_1}=(1,2)$与${\vec e_2}=(4,8)$D.${\vec e_1}=(-1,2)$与${\vec e_2}=(1,-2)$

分析 根据两个向量不是共线向量,即可判断它们能作为一组基底.

解答 解:对于A,$\overrightarrow{{e}_{1}}$=(1,1),与$\overrightarrow{{e}_{2}}$=(2,0)是不共线的向量,能作为一组基底;
对于B,因为$\overrightarrow{{e}_{1}}$=(1,1),$\overrightarrow{{e}_{2}}$=(2,2),满足$\overrightarrow{{e}_{1}}$=$\frac{1}{2}$$\overrightarrow{{e}_{2}}$,是共线向量,所以不能作为一组基底;
对于C,因为$\overrightarrow{{e}_{1}}$=(1,2),$\overrightarrow{{e}_{2}}$=(4,8),满足$\overrightarrow{{e}_{1}}$=$\frac{1}{4}$$\overrightarrow{{e}_{2}}$,是共线向量,所以不能作为一组基底;
对于D,因为$\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(1,-2),满足$\overrightarrow{{e}_{1}}$=-$\overrightarrow{{e}_{2}}$,是共线向量,所以不能作为一组基底.
故选:A.

点评 本题考查了判断两个向量是否为共线向量的问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设f0(x)=cosx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x)(n∈N),则f2016(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知全集U={x∈N|1≤x≤6},集合A={x|x2-6x+8=0},集合B={3,4,5,6}.
(1)求A∩B,A∪B;
(2)写出集合(∁UA)∩B的所有子集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,点P为BC边上一点,且$\overrightarrow{BP}$=2$\overrightarrow{PC}$,$\overrightarrow{AP}=\frac{1}{3}\overrightarrow{AB}+λ\overrightarrow{AC}$,则λ=(  )
A.$-\frac{2}{3}$B.$-\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知角α的终边上有一点P的坐标是(3,4),则cosα的值为(  )
A.3B.4C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,△ABC中,BC=6,以BC为直径的半圆分别交AB,AC于点E,F,若AC=2AE.
(Ⅰ)证明△AEF?~△ACB;   
(Ⅱ)求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知电流I与时间t的关系式为I=Asin(ωt+φ).
(1)如图是I=Asin(ωt+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象,根据图中数据求I=Asin(ωt+φ)的解析式;
(2)如果t在任意一段$\frac{1}{150}$秒的时间内,电流I=Asin(ωt+φ)都能取得最大值,那么ω的最小正整数值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各组函数中,两个函数相同的是(  )
A.y=($\root{3}{x}$)3和y=xB.y=($\sqrt{x}$)2和y=xC.y=$\sqrt{x^2}$和y=($\sqrt{x}$)2D.y=$\root{3}{x^3}$和y=$\frac{x^2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=$\frac{\sqrt{2x+1}}{x-2}$的定义域是{x|x≥-$\frac{1}{2}$且x≠2}.

查看答案和解析>>

同步练习册答案