分析 (1)通过图象直接求出A,求出周期,再求ω,将点(-$\frac{1}{900}$,0)的坐标代入求出φ,得到函数解析式.
(2)由题意,满足区间长度$\frac{1}{150}$至少包含一个周期,即$\frac{1}{150}$≥$\frac{2π}{ω}$,从而求出ω最小正整数值.
解答 解:(1)因为:周期T=2[$\frac{1}{180}$-(-$\frac{1}{900}$)]=$\frac{1}{75}$,ω=$\frac{2π}{T}$=150π,又A=300,
所以:I=300sin(150πt+φ).
将点(-$\frac{1}{900}$,0)的坐标代入上式,得sin(φ-$\frac{π}{6}$)=0,
由于:|φ|<$\frac{π}{2}$,
所以:φ-$\frac{π}{6}$=0,φ=$\frac{π}{6}$,
可得:I=300sin(150πt+$\frac{π}{6}$).
(2)如果t在任意一段$\frac{1}{150}$秒的时间内,电流I=Asin(ωt+φ)都能取得最大值,
必满足区间长度$\frac{1}{150}$至少包含一个周期,即$\frac{1}{150}$≥$\frac{2π}{ω}$,
可得:ω≥300π≈942.3,
所以:ω的最小正整数值是943.
点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,y=Asin(ωx+φ)中参数的物理意义,考查学生数形结合能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{2}}}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 对于线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,直线必经过点($\overline{x}$,$\overline{y}$) | |
| B. | 茎叶图的优点在于它可以保存原始数据,并且可以随时记录 | |
| C. | 掷一枚均匀硬币出现正面向上的概率是$\frac{1}{2}$,那么一枚硬币投掷2次一定出现正面 | |
| D. | 将一组数据中的每一个数据都加上或减去同一常数后,方差恒不变 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ${\vec e_1}=(1,1)$与${\vec e_2}=(2,0)$ | B. | ${\vec e_1}=(1,1)$与${\vec e_2}=(2,2)$ | ||
| C. | ${\vec e_1}=(1,2)$与${\vec e_2}=(4,8)$ | D. | ${\vec e_1}=(-1,2)$与${\vec e_2}=(1,-2)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分值 等级 人数 | 10分 | 8分 | 6分 | 4分 |
| A | 5 | 1 | 7 | 0 |
| B | 3 | 2 | 7 | 1 |
| C | 1 | 0 | 6 | 3 |
| D | 1 | 1 | 2 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com