分析 由随机变量ξ的分布列的性质求出c=$\frac{4}{3}$,再由P(ξ≥2)=P(ξ=2)+P(ξ=3)=1-P(ξ=1),利用对立事件概率计算公式能求出结果.
解答 解:∵随机变量ξ的分布列为P(ξ=k)=$\frac{c}{k(1+k)}$,k=1.2.3,其中c为常数,
∴$\frac{c}{1×(1+1)}+\frac{c}{2×(1+2)}+\frac{c}{3×(1+3)}$=1,
解得c=$\frac{4}{3}$,
∴P(ξ≥2)=P(ξ=2)+P(ξ=3)=1-P(ξ=1)
=1-$\frac{\frac{4}{3}}{2}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.
点评 本题考查概率的求法,是中档题,解题时要认真审题,注意离散型随机变量的分布列的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=($\root{3}{x}$)3和y=x | B. | y=($\sqrt{x}$)2和y=x | C. | y=$\sqrt{x^2}$和y=($\sqrt{x}$)2 | D. | y=$\root{3}{x^3}$和y=$\frac{x^2}{x}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m=-1,n=1 | B. | m=1,n=1 | C. | m=1,n=-1 | D. | m=-1,n=-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | { 7 } | B. | {1,3} | C. | {1,4} | D. | {1,2,3,4,7} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com