精英家教网 > 高中数学 > 题目详情
1.随机变量ξ的分布列为P(ξ=k)=$\frac{c}{k(1+k)}$,k=1.2.3,其中c为常数,则P(ξ≥2)=$\frac{1}{3}$.

分析 由随机变量ξ的分布列的性质求出c=$\frac{4}{3}$,再由P(ξ≥2)=P(ξ=2)+P(ξ=3)=1-P(ξ=1),利用对立事件概率计算公式能求出结果.

解答 解:∵随机变量ξ的分布列为P(ξ=k)=$\frac{c}{k(1+k)}$,k=1.2.3,其中c为常数,
∴$\frac{c}{1×(1+1)}+\frac{c}{2×(1+2)}+\frac{c}{3×(1+3)}$=1,
解得c=$\frac{4}{3}$,
∴P(ξ≥2)=P(ξ=2)+P(ξ=3)=1-P(ξ=1)
=1-$\frac{\frac{4}{3}}{2}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查概率的求法,是中档题,解题时要认真审题,注意离散型随机变量的分布列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知全集U={x∈N|1≤x≤6},集合A={x|x2-6x+8=0},集合B={3,4,5,6}.
(1)求A∩B,A∪B;
(2)写出集合(∁UA)∩B的所有子集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知电流I与时间t的关系式为I=Asin(ωt+φ).
(1)如图是I=Asin(ωt+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象,根据图中数据求I=Asin(ωt+φ)的解析式;
(2)如果t在任意一段$\frac{1}{150}$秒的时间内,电流I=Asin(ωt+φ)都能取得最大值,那么ω的最小正整数值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各组函数中,两个函数相同的是(  )
A.y=($\root{3}{x}$)3和y=xB.y=($\sqrt{x}$)2和y=xC.y=$\sqrt{x^2}$和y=($\sqrt{x}$)2D.y=$\root{3}{x^3}$和y=$\frac{x^2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\overrightarrow a$•$\overrightarrow b$,其中向量$\overrightarrow a$=(2cosx,$\sqrt{3}$cosx),$\overrightarrow b$=(cosx,2sinx).
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)△ABC中,角A,B,C的对边分别为a,b,c,且a2+b2-c2≥ab,求f(C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若曲线y=x2+mx+n在点(0,n)处的切线方程是x-y+1=0,则(  )
A.m=-1,n=1B.m=1,n=1C.m=1,n=-1D.m=-1,n=-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.集合A={1,2,3,4},集合B={1,4,7},则A∩B=(  )
A.{ 7 }B.{1,3}C.{1,4}D.{1,2,3,4,7}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数y=$\frac{\sqrt{2x+1}}{x-2}$的定义域是{x|x≥-$\frac{1}{2}$且x≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\frac{2}{{{e^x}+1}}+sinx$,其导函数记为f′(x),则f(2016)+f(-2016)+f′(2016)-f′(-2016)的值为2.

查看答案和解析>>

同步练习册答案