分析 (I)利用倍角公式、和差公式可得f(x),再利用周期性与单调性即可得出.
(II)利用余弦定理、三角函数的单调性即可得出.
解答 解:(Ⅰ)∵$f(x)=2{cos^2}x+\sqrt{3}sin2x=2sin(2x+\frac{π}{6})+1$,
∴$函数f(x)的最小正周期T=\frac{2π}{2}=π$
由$-\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ(k∈Z)$,则$-\frac{π}{3}+kπ≤x≤\frac{π}{6}+kπ(k∈z)$.
得f(x)在R上单调递增区间为[$-\frac{π}{3}+kπ,\frac{π}{6}+kπ$](k∈z).
(Ⅱ)a2+b2-c2≥ab,$cosC≥\frac{1}{2}$,
∴$0<C≤\frac{π}{3}$,
$由f(C)=2sin(2C+\frac{π}{6})+1$,$\frac{π}{6}<2C+\frac{π}{6}≤\frac{5π}{6}$,$当C=\frac{π}{6}时,f{(C)_{max}}=3$.
当C=$\frac{π}{3}$时,f(C)min=2,∴f(C)∈[2,3].
点评 本题考查了三角函数的图象与性质、倍角公式、和差公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 分值 等级 人数 | 10分 | 8分 | 6分 | 4分 |
| A | 5 | 1 | 7 | 0 |
| B | 3 | 2 | 7 | 1 |
| C | 1 | 0 | 6 | 3 |
| D | 1 | 1 | 2 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com