精英家教网 > 高中数学 > 题目详情
4.某地要举行一次大型国际博览会,为使志愿者较好地服务于大会,主办方决定对40名志愿者进行一次考核.考核分为两个科目:“地域文化”和“志愿者知识”,其中“地域文化”的考核成绩分为10分、8分、6分、4分共四个档次,“志愿者知识”的考核分为A、B、C、D共四个等级.这40名志愿者的考核结果如表:
分值
           等级           
人数
10分8分6分4分
A5170
B3271
C1063
D1120
(Ⅰ)从“志愿者知识”等级A中挑选2人,求这2人的“地域文化”考核得分均不小于8分的概率;
(Ⅱ)从“地域文化”考核成绩为10分的志愿者中挑选3人,记这3人中“志愿者知识”考核结果为A等级的人数为X,求随机变量X的分布列及数学期望.

分析 (Ⅰ)设“这2人的“地域文化”考核得分均不小于8分”为事件A,由此利用排列组合知识能求出这2人的“地域文化”考核得分均不小于8分的概率.
(Ⅱ)X的可能取值为0,1,2,3,X服从超几何分布,$P(X=k)=\frac{{C_5^k•C_5^{3-k}}}{{C_{10}^3}}(k=0,1,2,3)$,由此能求出X的分布列及数学期望.

解答 1解:(Ⅰ)设“这2人的“地域文化”考核得分均不小于8分”为事件A,
则这2人的“地域文化”考核得分均不小于8分的概率P(A)=$\frac{C_6^2}{{C_{13}^2}}=\frac{5}{26}$.
(Ⅱ)X的可能取值为0,1,2,3,
X服从超几何分布,$P(X=k)=\frac{{C_5^k•C_5^{3-k}}}{{C_{10}^3}}(k=0,1,2,3)$,
P(X=0)=$\frac{{C}_{5}^{0}{C}_{5}^{3}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
P(X=1)=$\frac{{C}_{5}^{1}{C}_{5}^{2}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(X=2)=$\frac{{C}_{5}^{2}{C}_{5}^{1}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(X=3)=$\frac{{C}_{5}^{3}{C}_{5}^{0}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
∴X的分布列为:

X0123
P$\frac{1}{12}$$\frac{5}{12}$$\frac{5}{12}$$\frac{1}{12}$
$EX=0×\frac{1}{12}+1×\frac{5}{12}+2×\frac{5}{12}+3×\frac{1}{12}=\frac{3}{2}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{3}$x3-2x.
(Ⅰ)若将函数f(x)的图象向下平移$\frac{1}{3}$个单位长度得函数h(x)的图象,求函数h(x)的图象在x=1处的切线方程;
(Ⅱ)若函数g(x)=f(x)-x2-x+m在[-2,4]上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知角α的终边上有一点P的坐标是(3,4),则cosα的值为(  )
A.3B.4C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知电流I与时间t的关系式为I=Asin(ωt+φ).
(1)如图是I=Asin(ωt+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在一个周期内的图象,根据图中数据求I=Asin(ωt+φ)的解析式;
(2)如果t在任意一段$\frac{1}{150}$秒的时间内,电流I=Asin(ωt+φ)都能取得最大值,那么ω的最小正整数值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0.若A∩B有且仅有一个元素,则r的取值集合为(  )
A.{3}B.{7}C.{3,7}D.{2,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列各组函数中,两个函数相同的是(  )
A.y=($\root{3}{x}$)3和y=xB.y=($\sqrt{x}$)2和y=xC.y=$\sqrt{x^2}$和y=($\sqrt{x}$)2D.y=$\root{3}{x^3}$和y=$\frac{x^2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=$\overrightarrow a$•$\overrightarrow b$,其中向量$\overrightarrow a$=(2cosx,$\sqrt{3}$cosx),$\overrightarrow b$=(cosx,2sinx).
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)△ABC中,角A,B,C的对边分别为a,b,c,且a2+b2-c2≥ab,求f(C)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.集合A={1,2,3,4},集合B={1,4,7},则A∩B=(  )
A.{ 7 }B.{1,3}C.{1,4}D.{1,2,3,4,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线l的参数方程为$\left\{{\begin{array}{l}{x=-2+3t}\\{y=3-4t}\end{array}}\right.$(t为参数),则直线l的倾斜角的余弦值为(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案