精英家教网 > 高中数学 > 题目详情
6.若直线l的参数方程为$\left\{{\begin{array}{l}{x=-2+3t}\\{y=3-4t}\end{array}}\right.$(t为参数),则直线l的倾斜角的余弦值为(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 由题意,tanα=-$\frac{4}{3}$,即可求得cosα=-$\frac{3}{5}$.

解答 解:设直线l的倾斜角为α,
由题意,tanα=-$\frac{4}{3}$,∴cosα=-$\frac{3}{5}$.
故选:B.

点评 本题考查直线的参数方程,考查直线l的倾斜角,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某地要举行一次大型国际博览会,为使志愿者较好地服务于大会,主办方决定对40名志愿者进行一次考核.考核分为两个科目:“地域文化”和“志愿者知识”,其中“地域文化”的考核成绩分为10分、8分、6分、4分共四个档次,“志愿者知识”的考核分为A、B、C、D共四个等级.这40名志愿者的考核结果如表:
分值
           等级           
人数
10分8分6分4分
A5170
B3271
C1063
D1120
(Ⅰ)从“志愿者知识”等级A中挑选2人,求这2人的“地域文化”考核得分均不小于8分的概率;
(Ⅱ)从“地域文化”考核成绩为10分的志愿者中挑选3人,记这3人中“志愿者知识”考核结果为A等级的人数为X,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.我们在高中阶段学习了六个三角比,则函数f(θ)=|sinθ+cosθ+tanθ+cotθ+secθ+cscθ|的最小值是2$\sqrt{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.观察下列三个三角恒等式
(1)tan20°+tan40°+$\sqrt{3}$tan20°•tan40°=$\sqrt{3}$
(2)tan22°+tan38°+$\sqrt{3}$tan22°•tan38°=$\sqrt{3}$
(3)tan67°+tan(-7)°+$\sqrt{3}$tan67°•tan(-7)°=$\sqrt{3}$
的特点,由此归纳出一个一般的等式,使得上述三式为它的一个特例,并证明你的结论.
(说明:本题依据你得到的等式的深刻性分层评分.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等比数列{an},a2=3,a5=81.
(Ⅰ)求a7和公比q;
(Ⅱ)设bn=an+log3an,求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$f(x)={2^x}-{log_{\frac{1}{2}}}$x,满足f(a)f(b)f(c)<0(0<a<b<c),若函数f(x)存在零点x0,则(  )
A.x0<aB.x0>aC.x0<cD.x0>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若直线2ax+by-2=0,(a>0,b>0)平分圆x2+y2-2x-4y-6=0,则$\frac{1}{a}+\frac{2}{b}$的最小值是$3+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知cosα<0,sinα>0,那么α的终边所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+$\sqrt{3}$asinC-b-c=0.
(Ⅰ)求A;
(Ⅱ)若a=2,bc=2,求b+c的值.

查看答案和解析>>

同步练习册答案