精英家教网 > 高中数学 > 题目详情
1.已知等比数列{an},a2=3,a5=81.
(Ⅰ)求a7和公比q;
(Ⅱ)设bn=an+log3an,求数列{bn}的前n项的和.

分析 (I)根据等比数列的性质求出公比q和a7
(II)化简bn,使用分组求和得出{bn}的前n项的和.

解答 解:(Ⅰ)∵a2=3,a5=81,∴q3=$\frac{{a}_{5}}{{a}_{2}}$=27,
∴q=3,∴a7=a5q2=729.
(Ⅱ)a1=$\frac{{a}_{2}}{q}$=1,∴an=3n-1
设{bn}的前n项的和为Sn,bn=an+log3an=3n-1+(n-1),
∴Sn=(1+3+32+…+3n-1)+(0+1+2…+n-1)
=$\frac{(1-{3}^{n})}{1-3}$+$\frac{n(n-1)}{2}$
=$\frac{{3}^{n}+{n}^{2}-n-1}{2}$.

点评 本题考查了等比数列的性质,等差数列,等比数列的前n项和公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.集合A={(x,y)|x2+y2=4},B={(x,y)|(x-3)2+(y-4)2=r2},其中r>0.若A∩B有且仅有一个元素,则r的取值集合为(  )
A.{3}B.{7}C.{3,7}D.{2,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.cos13°cos17°-sin17°sin13°=(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1.
(1)求证:AB∥平面PCD;
(2)求证:面PBC⊥平面PAC;
(3)求二面角P-BC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在极坐标系中,求过点(1,0),且倾斜角为$\frac{π}{6}$的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线l的参数方程为$\left\{{\begin{array}{l}{x=-2+3t}\\{y=3-4t}\end{array}}\right.$(t为参数),则直线l的倾斜角的余弦值为(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A(-2,0),B(2,0),平面内的动点P满足条件:PA,PB两直线的斜率乘积为定值$-\frac{1}{2}$,记动点P的轨迹为C.
(1)求曲线C的方程;
(2)过定点Q(-4,0)的动直线l与曲线C交于M,N两点,求△OMN(O为坐标原点)面积的最大值,并求出△OMN面积最大时,直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某个服装店经营某种服装,在某周内获纯利润y(元)与该周每天销售这种服装件数x之间的一组数据关系见下表:
x3456789
y66697381899091
已知:$\sum_{i=1}^7{x_i^2}$=280,$\sum_{i=1}^7{y_i^2}$=45309,$\sum_{i=1}^7{{x_i}{y_i}}$=3487.
参考公式:回归直线的方程是:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.
(1)求$\overline x$,$\overline y$;
(2)画出散点图;
(3)求获纯利润y与每天销售件数x之间的线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知球O是正方体ABCD-A1B1C1D1的内切球,则在正方体ABCD-A1B1C1D1内任取一点M,点M在球O外的概率是1-$\frac{π}{6}$.

查看答案和解析>>

同步练习册答案