精英家教网 > 高中数学 > 题目详情
15.已知cosα<0,sinα>0,那么α的终边所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用三角函数线,直接判断角所在象限即可.

解答 解:cosα<0,sinα>0,那么α的终边所在的象限为第二象限.
故选:B.

点评 本题考查三角函数线以及三角函数符号的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.集合A={1,2,3,4},集合B={1,4,7},则A∩B=(  )
A.{ 7 }B.{1,3}C.{1,4}D.{1,2,3,4,7}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若直线l的参数方程为$\left\{{\begin{array}{l}{x=-2+3t}\\{y=3-4t}\end{array}}\right.$(t为参数),则直线l的倾斜角的余弦值为(  )
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数$f(x)=\frac{2}{{{e^x}+1}}+sinx$,其导函数记为f′(x),则f(2016)+f(-2016)+f′(2016)-f′(-2016)的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某个服装店经营某种服装,在某周内获纯利润y(元)与该周每天销售这种服装件数x之间的一组数据关系见下表:
x3456789
y66697381899091
已知:$\sum_{i=1}^7{x_i^2}$=280,$\sum_{i=1}^7{y_i^2}$=45309,$\sum_{i=1}^7{{x_i}{y_i}}$=3487.
参考公式:回归直线的方程是:$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,其中$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.
(1)求$\overline x$,$\overline y$;
(2)画出散点图;
(3)求获纯利润y与每天销售件数x之间的线性回归方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一袋中有大小相同的4个红球和2个白球,给出下列结论:
①从中任取3球,恰有一个白球的概率是$\frac{3}{5}$;
②从中有放回的取球6次,每次任取一球,则取到红球次数的方差为$\frac{4}{3}$;
③从中不放回的取球2次,每次任取1球,则在第一次取到红球后,第二次再次取到红球的概率为$\frac{2}{5}$;
④从中有放回的取球3次,每次任取一球,则至少有一次取到红球的概率为$\frac{26}{27}$.
其中所有正确结论的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设等差数列{an}的前n项和为Sn,若2a8=8+a11,则S9的值等于(  )
A.54B.45C.72D.27

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a1=1,an+1=2an+1.
(Ⅰ)求a2,a3,a4,a5
(Ⅱ)猜想an的表达式,并用数学归纳法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设常数a>0,λ∈R,函数f(x)=x2(x-a)-λ(x+a)3,若函数f(x)恰有两个零点,求λ的值.

查看答案和解析>>

同步练习册答案