分析 ①所求概率为$\frac{{C}_{2}^{1}{C}_{4}^{2}}{{C}_{6}^{3}}$,计算即得结论;
②利用取到红球次数X~B(6,$\frac{2}{3}$)可知其方差为$6•\frac{2}{3}•(1-\frac{2}{3})$=$\frac{4}{3}$;
③根据条件概率进行计算得到第二次再次取到红球的概率为$\frac{3}{5}$;
④通过每次取到红球的概率P=$\frac{2}{3}$可知所求概率为1-$(1-\frac{2}{3})^{3}$=$\frac{26}{27}$.
解答 解:①从中任取3球,恰有一个白球的概率是$\frac{{C}_{2}^{1}{C}_{4}^{2}}{{C}_{6}^{3}}$=$\frac{2•\frac{4•3}{2•1}}{\frac{6•5•4}{3•2•1}}$=$\frac{3}{5}$,故正确;
②从中有放回的取球6次,每次任取一球,
取到红球次数X~B(6,$\frac{2}{3}$),其方差为$6•\frac{2}{3}•(1-\frac{2}{3})$=$\frac{4}{3}$,故正确;
③从中不放回的取球2次,每次任取1球,则在第一次取到红球后,
此时袋中还有3个红球2个白球,则第二次再次取到红球的概率为$\frac{3}{5}$;故③错误,
④从中有放回的取球3次,每次任取一球,每次取到红球的概率P=$\frac{2}{3}$,
∴至少有一次取到红球的概率为1-$(1-\frac{2}{3})^{3}$=$\frac{26}{27}$,故正确.
故答案为:①②④.
点评 本题主要考查命题的真假判断,涉及概率的计算,考查学生的计算能力.
科目:高中数学 来源: 题型:选择题
| A. | x0<a | B. | x0>a | C. | x0<c | D. | x0>c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-6-4$\sqrt{2}$,0)∪(0,+∞) | B. | (-6+4$\sqrt{2}$,0)∪(0,+∞) | C. | (-6+4$\sqrt{2}$,0) | D. | (-6-4$\sqrt{2}$,-6+4$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 概率是频率的稳定值,频率是概率的近似值 | |
| B. | 已知事件M⊆N,则当M发生时,N一定发生 | |
| C. | 若A,B为互斥事件,则P(A)+P(B)<1 | |
| D. | 若一生产厂家称,我们厂生产的产品合格率是0.98,则任取一件该产品,其是合格品的可能性大小为98% |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com