精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=exx2ax2+axaR.

1)当a1时,求fx)的极值;

2)若fx)恰有两个零点,求实数a的取值范围.

【答案】1fx极大值=﹣2fx极小值e;(2a∈(﹣∞,0)∪{2e}.

【解析】

1)代入a的值,求出函数的导数,解关于导函数的不等式,求出函数的极值即可;

2)显然x2是函数fx)的一个零点,若fx)恰有两个零点,则只需yexax恰有1个零点,问题转化为只需gx)=exhxax只有1个交点即可,通过讨论a的范围,结合函数的图象判断即可.

1a1时,fx)=exx2x2+x

f′(x)=exx1)﹣x+1=(x1)(ex1),

f′(x)>0,解得:x1x0

f′(x)<0,解得:0x1

fx)在(﹣∞,0)递增,在(01)递减,在(1+∞)递增,

fx极大值f0)=﹣2fx极小值f1)=e.

2fx)=exx2ax2+ax=(x2)(exax),

显然x2是函数fx)的一个零点,若fx)恰有两个零点,

则只需yexax恰有1个零点,

即只需gx)=exhxax只有1个交点即可,

a0时,如图示:

结合图象,a0gx)=exhxax只有1个交点,符合题意;

a0时,gx)=exy0无交点,不合题意;

a0时,gx)=exhxax相切时1个交点,

设切点是Pmem),则aemi),

emamii),由(i)(ii)解得:P1e),a2e,符合题意,

综上,若fx)恰有两个零点,则a∈(﹣∞,0)∪{2e}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大型商场的空调在1月到5月的销售量与月份相关,得到的统计数据如下表:

月份

1

2

3

4

5

销量(百台)

0.6

0.8

1.2

1.6

1.8

(1)经分析发现1月到5月的销售量可用线性回归模型拟合该商场空调的月销量(百件)与月份之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测6月份该商场空调的销售量;

(2)若该商场的营销部对空调进行新一轮促销,对7月到12月有购买空调意愿的顾客进行问卷调查.假设该地拟购买空调的消费群体十分庞大,经过营销部调研机构对其中的500名顾客进行了一个抽样调查,得到如下一份频数表:

有购买意愿对应的月份

7

8

9

10

11

12

频数

60

80

120

130

80

30

现采用分层抽样的方法从购买意愿的月份在7月与12月的这90名顾客中随机抽取6名,再从这6人中随机抽取3人进行跟踪调查,求抽出的3人中恰好有2人是购买意愿的月份是12月的概率.

参考公式与数据:线性回归方程,其中.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若是函数的零点,是函数的零点.

1)比较的大小;

2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数 处的切线方程为,求实数的值;

2)设,当时,求的最小值;

3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了更好地贯彻党的五育并举的教育方针,某市要对全市中小学生体能达标情况进行了解,决定通过随机抽样选择几个样本校对学生进行体能达标测试,并规定测试成绩低于60分为不合格,否则为合格,若样本校学生不合格人数不超过其总人数的5%,则该样本校体能达标为合格.已知某样本校共有1000名学生,现从中随机抽取40名学生参加体能达标测试,首先将这40名学生随机分为甲、乙两组,其中甲乙两组学生人数的比为3:2,测试后,两组各自的成绩统计如下:甲组的平均成绩为70,方差为16,乙组的平均成绩为80,方差为36.

1)估计该样本校学生体能测试的平均成绩;

2)求该样本校40名学生测试成绩的标准差s

3)假设该样本校体能达标测试成绩服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,利用估计值估计该样本校学生体能达标测试是否合格?

(注:1.本题所有数据的最后结果都精确到整数;2若随机变量z服从正态分布,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】健身馆某项目收费标准为每次60元,现推出会员优惠活动:具体收费标准如下:

消费次数

1

2

3

不少于4

收费比例

0.95

0.90

0.85

0.80

现随机抽取了100位会员统计它们的消费次数,得到数据如下:

消费次数

1

2

3

不少于4

频数

60

25

10

5

假设该项目的成本为每次30元,根据给出的数据回答下列问题:

1)估计1位会员至少消费两次的概率

2)某会员消费4次,求这4次消费获得的平均利润;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲,乙二人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球即终止,每个球在每一次被取出的机会是等可能的.

(Ⅰ)求袋中原有白球的个数:

(Ⅱ)求取球次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年春季,某出租汽车公司决定更换一批新的小汽车以代替原来报废的出租车,现有采购成本分别为万元/辆和万元/辆的两款车型,根据以往这两种出租车车型的数据,得到两款出租车车型使用寿命频数表如下:

1)填写下表,并判断是否有的把握认为出租车的使用寿命年数与汽车车型有关?

2)从的车型中各随机抽取车,以表示这车中使用寿命不低于年的车数,求的分布列和数学期望;

3)根据公司要求,采购成本由出租公司负责,平均每辆出租车每年上交公司万元,其余维修和保险等费用自理.假设每辆出租车的使用寿命都是整数年,用频率估计每辆出租车使用寿命的概率,分别以这辆出租车所产生的平均利润作为决策依据,如果你是该公司的负责人,会选择采购哪款车型?

附:.

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱柱中,侧面为菱形,且,点EF分别为的中点.求证:

1)平面平面

2平面.

查看答案和解析>>

同步练习册答案