精英家教网 > 高中数学 > 题目详情
4.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右焦点为F1,F2,过右焦点F2且垂直于x轴的直线与双曲线交于A,B两点,若△F1AB为等边三角形,则该双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{6}}{2}$D.2

分析 联立方程求出A,B的坐标,结合△F1AB为等边三角形,建立方程关系,进行求解即可.

解答 解:当x=c时,$\frac{{c}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,得$\frac{{y}^{2}}{{b}^{2}}$=$\frac{{c}^{2}}{{a}^{2}}$-1=$\frac{{c}^{2}-{a}^{2}}{{a}^{2}}$=$\frac{{b}^{2}}{{a}^{2}}$,
则y2=$\frac{{b}^{4}}{{a}^{2}}$,则y=±$\frac{{b}^{2}}{a}$,
则A(c,$\frac{{b}^{2}}{a}$),B(c,-$\frac{{b}^{2}}{a}$),F1(-c,0),
∵△F1AB为等边三角形,
∴∠AF1F2=30°即可,
则tan∠AF1F2=tan30°=$\frac{\frac{{b}^{2}}{a}}{2c}$=$\frac{{b}^{2}}{2ac}$=$\frac{\sqrt{3}}{3}$,即b2=$\frac{2\sqrt{3}}{3}$ac,
则c2-a2=$\frac{2\sqrt{3}}{3}$ac,
即c2-$\frac{2\sqrt{3}}{3}$ac-a2=0,
则e2-$\frac{2\sqrt{3}}{3}$e-1=0,
得e=$\sqrt{3}$,
故选:B

点评 本题主要考查双曲线离心率的计算,根据条件求出交点坐标,结合三角形的边角公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.执行如图所示的程序框图,若输入S的值为-1,则输出S的值为(  )
A.-1B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:(x-3)2+(y-4)2=4,直线l1过定点A(1,0)
(1)若直线l1与圆相切,切点为B,求线段AB的长度;
(2)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与l2:x+2y+2=0的交点为N,判断AM•AN是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}$(n2+3n).(n∈N*
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{a}_{n}{a}_{n+1}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从1,2,3,4,5,6中可重复取两个数构成一个两位数,则这个两位数大于30的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设锐角△ABC的内角A,B,C所对边的长分别为a,b,c,且有2asinB-$\sqrt{3}$•b=0.
(1)求角A的大小;
(2)若b+c=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若集合A={x|x2-x≥0},则A=(-∞,0]∪[1,+∞);∁R(A)=(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.甲乙两队进行排球比赛,已知在每一局比赛中甲队获胜的概率是$\frac{3}{5}$,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于(  )
A.$\frac{3}{5}$B.$\frac{13}{25}$C.$\frac{38}{75}$D.$\frac{81}{125}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在四棱锥S-ABCD中,底面ABCD是边长为1的菱形,$∠ABC=\frac{π}{4},SA⊥$底面ABCD,SA=2,M为SA的中点.
(1)求异面直线AB与MD所成角的大小;
(2)求直线AS与平面SCD所成角的正弦值;
(3)求平面SAB与平面SCD所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案