精英家教网 > 高中数学 > 题目详情
4.(x2+2)(x-$\frac{1}{x}$)6的展开式中常数项为(  )
A.-40B.-25C.25D.55

分析 (x-$\frac{1}{x}$)6的通项公式Tr+1=${∁}_{6}^{r}{x}^{6-r}(-\frac{1}{x})^{r}$=(-1)r${∁}_{6}^{r}$x6-2r,(r=0,1,2,…,6).令6-2r=0或-2,解得r即可得出.

解答 解:(x-$\frac{1}{x}$)6的通项公式Tr+1=${∁}_{6}^{r}{x}^{6-r}(-\frac{1}{x})^{r}$=(-1)r${∁}_{6}^{r}$x6-2r,(r=0,1,2,…,6).
令6-2r=0或-2,解得r=3或4.
∴(x2+2)(x-$\frac{1}{x}$)6的展开式中常数项=$(-1)^{4}{∁}_{6}^{4}$+2$(-1)^{3}{∁}_{6}^{3}$=15-2×20=-25.
故选:B.

点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列等式不正确的是(  )
A.${C}_{n}^{m}$=${C}_{n}^{n-m}$B.${C}_{n}^{m}$=$\frac{{A}_{n}^{m}}{n!}$
C.(n+2)(n+1)${A}_{n}^{m}$=${A}_{n+2}^{m+2}$D.${C}_{n}^{r}$=${C}_{n-1}^{r-1}$+${C}_{n-1}^{r}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x),g(x)均是连续函数,若${∫}_{1}^{2}$g(x)dx=3,${∫}_{0}^{2}$f(x)dx=1,${∫}_{0}^{1}$f(x)dx=-2,则${∫}_{1}^{2}$[f(x)+g(x)]dx=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若p,q是奇数.则方程x2+px+q=0不可能有整数根.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,AC为圆O的直径,B为圆周上不与点A、C重合的点,PA垂直于圆O所在的平面,连结PB、PC、AB、BC,作AN⊥PB,AS⊥PC,连结SN,则图中直角三角形个数为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知奇函数f(x)是以4为周期的周期函数,则f(2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=x|x|是(  )
A.偶函数且增函数B.偶函数且减函数C.奇函数且增函数D.奇函数且减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.确定下列各三角函数值的正负号:
(1)sin170°;
(2)cos(-218°)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.图中阴影部分的面积用定积分表示为(  )
A.${∫}_{0}^{1}$2xdxB.${∫}_{0}^{1}$(2x-1)dxC.${∫}_{0}^{1}$(2x+1)dxD.${∫}_{0}^{1}$(1-2x)dx

查看答案和解析>>

同步练习册答案