精英家教网 > 高中数学 > 题目详情
15.函数f(x),g(x)均是连续函数,若${∫}_{1}^{2}$g(x)dx=3,${∫}_{0}^{2}$f(x)dx=1,${∫}_{0}^{1}$f(x)dx=-2,则${∫}_{1}^{2}$[f(x)+g(x)]dx=6.

分析 由题意和定积分的运算性质可得原式=${∫}_{0}^{2}$f(x)dx-${∫}_{0}^{1}$f(x)dx+${∫}_{1}^{2}$g(x)dx,代值计算可得.

解答 解:由题意可得${∫}_{1}^{2}$[f(x)+g(x)]dx=${∫}_{1}^{2}$f(x)dx+${∫}_{1}^{2}$g(x)dx
=${∫}_{0}^{2}$f(x)dx-${∫}_{0}^{1}$f(x)dx+${∫}_{1}^{2}$g(x)dx=1-(-2)+3=6
故答案为:6

点评 本题考查定积分的运算性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=Asin(ωx+φ)(A,ω>0,0<|φ|<π)在一个周期内的图象如图所示.
(1)求函数f(x)的解析式;
(2)求g(x)=f(3x+$\frac{π}{4}$)-1在[-$\frac{π}{6}$,$\frac{π}{3}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2-t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数),当t=-1时,对应曲线C1上一点A且点A关于原点的对称点为B,以原点O为极点,以x轴为正半轴为极轴建立坐标系,曲线C2的极坐标方程为ρ=$\frac{6}{\sqrt{9-3si{n}^{2}θ}}$.
(1)求A,B两点的极坐标;
(2)设P为曲线C2上动点,求|PA|2+|PB|2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow{b}$=(-2,2)则向量$\overrightarrow{a}$在向量$\overrightarrow{b}$方向上的投影为-$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数g(x)=$\frac{1+sinx-cosx}{x}$(0<x≤π),求:
(1)g′(x),(x2g′(x)+1)′;
(2)分别求满足(x2g′(x)+1)′≥0,(x2g′(x)+1)′<0的x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如果函数y=$\frac{x+1}{x+a}$在(-$\frac{1}{2}$,+∞)上为减函数,求参数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在极坐标系中,已知圆C圆心的极坐标为($\sqrt{2}$,$\frac{π}{4}$),半径为$\sqrt{3}$.
(1)求圆C的极坐标方程;
(2)以极点为原点,以极轴为x轴正半轴建立直角坐标系,已知直线l的参数方程为$\left\{\begin{array}{l}{x=2+tcosα}\\{y=2+tsinα}\end{array}\right.$(t为参数),直线l交圆C于A、B两点,且|AB|∈[2$\sqrt{2}$,2$\sqrt{3}$),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.(x2+2)(x-$\frac{1}{x}$)6的展开式中常数项为(  )
A.-40B.-25C.25D.55

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.用计算器求在0°~360°范围内的角x(精确到0.01°):
(1)cosx=0.12;(2)sinx=0.45.

查看答案和解析>>

同步练习册答案