【题目】若定义在
上,且不恒为零的函数
满足:对于任意实数
和
,总有
恒成立,则称
为“类余弦型”函数.
(1)已知
为“类余弦型”函数,且
,求
和
的值;
(2)证明:函数
为偶函数;
(3)若
为“类余弦型”函数,且对于任意非零实数
,总有
,设有理数
、
满足
,判断
和
大小关系,并证明你的结论.
【答案】(1)
,
;(2)证明见解析;(3)
,理由见解析.
【解析】
(1)令
,
可求出
的值,令
可求出
的值;
(2)令
,代入题中等式得出
,可证明出函数
为偶函数;
(3)令
,证明出
,即可说明对任意
、
且
,有
,然后设
,
,
、
是非负整数,
、
为正整数,利用偶函数和前面的结论,即可得出
和
的大小关系.
(1)令
,
,则有
,
,
.
令
,则有
,所以,
;
(2)令
,可得
,
,
由于函数
的定义域为
,因此,函数
为偶函数;
(3)
时,
,
,
所以,
,
令
,即对任意的正整数
有
,
则
,
所以,对于任意正整数
,
成立,
对任意的
、
且
,则有
成立,
、
为有理数,所以可设
,
,其中
、
为非负整数,
、
为正整数,则
,
,
令
,
,
,则
、
为正整数,
,
,所以,
,即
,
函数
为偶函数,
,
,
.
科目:高中数学 来源: 题型:
【题目】某家具公司生产甲、乙两种书柜,制柜需先制白胚再油漆,每种柜的制造白胚工时数、油漆工时数的有关数据如下:
工艺要求 | 产品甲 | 产品乙 | 生产能力(工时/天) |
制白胚工时数 | 6 | 12 | 120 |
油漆工时数 | 8 | 4 | 64 |
单位利润 | 20元 | 24元 |
则该公司合理安排这两种产品的生产,每天可获得的最大利润为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列命题:
①命题“若
,则
”的否命题为“若
,则
”;
②“
”是“
”的必要不充分条件;
③
命题“,使得
”的否定是:“
,均有
”;
④命题“若
,则
”的逆否命题为真命题
其中所有正确命题的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:①
越小,X与Y有关联的可信度越小;②若两个随机变量的线性相关性越强,则相关系数r的值越接近于1;③“若
,则
类比推出,“若
,则
;④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,推理形式错误.其中说法正确的有( )个
A.0B.1C.2D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.
![]()
(Ⅰ)证明:AB1⊥平面A1B1C1;
(Ⅱ)求直线AC1与平面ABB1所成的角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中放有大小和形状相同而颜色互不相同的小球若干个, 其中标号为0的小球1个, 标号为1的小球1个, 标号为2的小球2个, 从袋子中不放回地随机抽取2个小球, 记第一次取出的小球标号为
,第二次取出的小球标号为
.
(1) 记事件
表示“
”, 求事件
的概率;
(2) 在区间
内任取2个实数
, 记
的最大值为
,求事件“
”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,底面
是直角梯形,侧棱
底面
,
垂直于
和
,
为棱
上的点,
,
.
![]()
(1)若
为棱
的中点,求证:
//平面
;
(2)当
时,求平面
与平面
所成的锐二面角的余弦值;
(3)在第(2)问条件下,设点
是线段
上的动点,
与平面
所成的角为
,求当
取最大值时点
的位置.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com