分析 (1)由于f(x)+f(y)=f(x+y),分别令x=y=0,可求得f(0)=0,再令y=-x,即可证得f(x)在R上是奇函数;
(2)任取x1>x2,利用单调函数的定义法,作差f(x1)-f(x2)后转化,利用x>0时,f(x)<0即可证得f(x)在R上是减函数;
(3)利用(1)(2)知,奇函数f(x)为R上的减函数,再利用f(1)=-$\frac{2}{3}$,即可求得f(x)在[-3,3]上的最大值为与最小值
解答 (1)证明:∵函数f(x)对于任意x,y∈R总有f(x)+f(y)=f(x+y),
令x=y=0得f(0)=0,
令y=-x得f(-x)=-f(x),
∴f(x)在R上是奇函数;
(2)证明:在R上任取x1>x2,则x1-x2>0,
f(x1)-f(x2)=f(x1)+f(-x2)=f(x1-x2),
∵x>0时,f(x)<0,f(x1-x2)<0,
∴f(x1)<f(x2),
∴f(x)在R上是减函数.
(3)解:∵f(x)是R上减函数,∴f(x)在[-3,3]上也是减函数,
∴f(x)在[-3,3]上的最大值和最小值分别为f(-3)和f(3),
而f(3)=3f(1)=-2,f(-3)=-f(3)=2,
∴f(x)在[-3,3]上的最大值为2,最小值为-2.
点评 本题考查抽象函数及其应用,考查函数奇偶性与单调性的判定,突出考查赋值法,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-4,+∞) | B. | (-2,+∞) | C. | [-4,-2) | D. | [-4,-2)∪(-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1} | B. | {0,1} | C. | {-1,0,1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{1}{2}]$ | B. | (0,1) | C. | $(\frac{1}{2},1)$ | D. | $[\frac{1}{2},1)$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com