设.
(1)试判断函数f(x)的单调性,并给出证明:
(2)解关于x的不等式
科目:高中数学 来源:北京市海淀区2008-2009学年度高三年级第一学期期中练习数学文科 题型:044
设f(x)是定义在D上的函数,若对D中的任意两数x1,x2(x1≠x2),恒有,则称f(x)为定义在D上的C函数.
(1)试判断函数f(x)=x2是否为定义域上的C函数,并说明理由;
(2)若函数f(x)是R上的奇函数,试证明f(x)不是R上的C函数;
(3)设f(x)是定义在D上的函数,若对任何实数a∈(0,1)以及D中的任意两数x1,x2,恒有f(ax1+(1-a)x2]≤af(x1)+(1-a)f(x2),则称f(x)为定义在D上的C函数.已知f(x)是R上的C函数,m是给定的正整数,设an=f(n),n,0,1,2,…,m,且a0=0,am=2m,记Sf=a1+a2+…+am对于满足条件的任意函数f(x),试求Sf的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
设f(x)=log2,F(x)=+f(x).
(1)试判断函数f(x)的单调性,并用函数单调性定义,给出证明;
(2)若f(x)的反函数为f-1(x),证明: 对任意的自然数n(n≥3),都有f-1(n)>;
(3)若F(x)的反函数F-1(x),证明: 方程F-1(x)=0有惟一解.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com