精英家教网 > 高中数学 > 题目详情
已知双曲线的两个焦点分别为,则满足△的周长为的动点的轨迹方程为 (   )
A.B.C.D.
C

试题分析:根据已知双曲线方程,运用公式可得它的两个焦点分别为F1(0,-)、F2(0,).再根据△PF1F2的周长为6+2,结合椭圆的定义得到点P的轨迹是以F1、F2为焦点的椭圆,因为三角形三顶点不能共线,所以上、下顶点除外.由椭圆的定义求得椭圆的长半轴、短半轴分别为3和2.因此可得椭圆的标准方程,得到正确选项.
因为双曲线,因此可知其两个焦点分别为F1(0,-)、F2(0,).
因为△的周长为,那么说明了动点的轨迹是以为焦点的椭圆,则由椭圆的定义得到,长轴长为6,长半轴为3,短半轴长为2,故可知P的轨迹方程为,同时去掉上下顶点。选C.
点评:该试题着重考查了椭圆、双曲线等圆锥曲线的标准方程,以及简单的轨迹方程求法等知识点,属于中档题.那么求轨迹方程 方法一般是考虑定义法和直接法来求解的比较多。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知动点M的坐标满足,则动点M的轨迹方程是
A.椭圆B.双曲线C.抛物线D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知对称轴为坐标轴的双曲线的渐近线方程为,若双曲线上有一点M(),使,那双曲线的交点(     )。
A.在轴上
B.在轴上
C.当时在轴上
D.当时在轴上

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知焦点在轴上的椭圆过点,且离心率为,为椭圆的左顶点.
(1)求椭圆的标准方程;
(2)已知过点的直线与椭圆交于两点.
① 若直线垂直于轴,求的大小;
② 若直线轴不垂直,是否存在直线使得为等腰三角形?如果存在,求出直线的方程;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C=1(a>b>0)的一个焦点是F(1,0),且离心率为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设经过点F的直线交椭圆CMN两点,线段MN的垂直平分线交y轴于点P(0,y0),求y0的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆方程为,左、右焦点分别是,若椭圆上的点的距离和等于
(Ⅰ)写出椭圆的方程和焦点坐标;
(Ⅱ)设点是椭圆的动点,求线段中点的轨迹方程;
(Ⅲ)直线过定点,且与椭圆交于不同的两点,若为锐角(为坐标原点),求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆)的一个顶点为,离心率为,直线与椭圆交于不同的两点.(1) 求椭圆的方程;(2) 当的面积为时,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是椭圆上的点, 是椭圆的两个焦点,则的值为
A. 10B. 8C.6D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)直线l:y=kx+1与双曲线C:的右支交于不同的两点A,B
(Ⅰ)求实数k的取值范围;
(Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案