17£®ÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬DΪÍÖÔ²¶ÌÖáÉϵÄÒ»¸ö¶¥µã£¬DF1µÄÑÓ³¤ÏßÓëÍÖÔ²ÏཻÓÚG£®¡÷DGF2µÄÖܳ¤Îª8£¬|DF1|=3|GF1|£®
£¨¢ñ£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨¢ò£©¹ýÍÖÔ²EµÄ×ó¶¥µãA×÷ÍÖÔ²EµÄÁ½Ìõ»¥Ïà´¹Ö±µÄÏÒAB¡¢AC£¬ÊÔÎÊÖ±ÏßBCÊÇ·ñºã¹ý¶¨µã£¿ÈôÊÇ£¬Çó³ö´Ë¶¨µãµÄ×ø±ê£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÈý½ÇÐεÄÖܳ¤Çó³öaµÄÖµ£¬ÉèG£¨x0£¬y0£©£¬Çó³öb£¬cµÄÖµ£¬´Ó¶øÇó³öÍÖÔ²EµÄ·½³Ì¼´¿É£»
£¨¢ò£©·Ö±ðÉè³öAB£¬ACµÄбÂÊ£¬ÁªÁ¢Ö±ÏߺÍÔ²µÄ·½³Ì×飬·Ö±ðÇó³öB¡¢CµÄ×ø±ê£¬Çó³öÖ±ÏßBCµÄ·½³Ì£¬´Ó¶øÇó³öÖ±Ïߺã¹ýµÄ¶¨µã¼´¿É£®

½â´ð ½â£º£¨¢ñ£©ÓÉ¡÷DGF2µÄÖܳ¤ÊÇ8£¬µÃ£º4a=8£¬½âµÃ£ºa=2£¬
ÓÉ|DF1|=3|GF1|ÇÒGÔÚDF1µÄÑÓ³¤ÏßÉÏ£¬
µÃ$\overrightarrow{DG}$=$\frac{4}{3}$$\overrightarrow{{DF}_{1}}$£¬ÉèG£¨x0£¬y0£©£¬
Ôò£¨x0£¬y0-b£©=$\frac{4}{3}$£¨-c£¬-b£©£¬x0=-$\frac{4}{3}$c£¬y0=-$\frac{1}{3}$b£¬
ÓÉ$\frac{{{x}_{0}}^{2}}{{a}^{2}}$+$\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1£¬½âµÃ£ºc2=2£¬
¡àb2=2£¬ÍÖÔ²EµÄ·½³ÌÊÇ$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1£»
£¨¢ò£©A£¨-2£¬0£©£¬Ö±ÏßAB¡¢AC¾ùÓÐбÂÊ£¬
ÉèAB£ºy=k£¨x+2£©£¬AC£ºy=-$\frac{1}{k}$£¨x+2£©£¬
ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1}\\{y=k£¨x+2£©}\end{array}\right.$£¬µÃ£º£¨2k2+1£©x2+8k2x+8k2-4=0£¬
½âµÃ£ºx1=-2£¬x2=-$\frac{{4k}^{2}-2}{{2k}^{2}+1}$£¬
µ±x2=-$\frac{{4k}^{2}-2}{{2k}^{2}+1}$ʱ£¬y2=$\frac{4k}{{2k}^{2}+1}$
¡àB£¨-$\frac{{4k}^{2}-2}{{2k}^{2}+1}$£¬$\frac{4k}{{2k}^{2}+1}$£©£¬
ͬÀíC£¨$\frac{{2k}^{2}-4}{{k}^{2}+2}$£¬-$\frac{4k}{{k}^{2}+2}$£©£¬
Ö±ÏßBCµÄ·½³ÌÊÇ3kx+2£¨k2-1£©y+2k=0£¬
Ö±ÏßBCºã¹ý¶¨µã£¨-$\frac{2}{3}$£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁËÇóÍÖÔ²·½³ÌÎÊÌ⣬¿¼²éÖ±ÏߺÍÍÖÔ²µÄ¹ØÏµÒÔ¼°×ª»¯Ë¼Ï룬ÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÈôÏòÁ¿$\overrightarrow{a}$¡¢$\overrightarrow{b}$Âú×ã|$\overrightarrow{a}$+$\overrightarrow{b}$|=2£¬|$\overrightarrow{a}$-$\overrightarrow{b}$|=3£¬Ôò|$\overrightarrow{a}$|•|$\overrightarrow{b}$|µÄȡֵ·¶Î§ÊÇ[$\frac{5}{4}$£¬$\frac{13}{4}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®Èý¸öÊý40.2£¬30.4£¬log0.40.5µÄ´óС˳ÐòÊÇ£¨¡¡¡¡£©
A£®30.4£¼40.2£¼log0.40.5B£®${3^{0.4}}£¼{log_{0.4}}0.5£¼{4^{0.2}}$
C£®${log_{0.4}}0.5£¼{3^{0.4}}£¼{4^{0.2}}$D£®${log_{0.4}}0.5£¼{4^{0.2}}£¼{3^{0.4}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬AB¡ÍÆ½ÃæBCC1B1£¬$¡ÏBC{C_1}=\frac{¦Ð}{3}£¬AB=B{B_1}=2£¬BC=1£¬D$ΪCC1µÄÖе㣮
£¨1£©ÇóÖ¤£ºDB1¡ÍÆ½ÃæABD£»
£¨2£©ÇóµãA1µ½Æ½ÃæADB1µÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵOxyÖУ¬ÒÑÖªµãF£¨1£¬0£©ºÍÖ±Ïßl£ºx=4£¬Ô²CÓëÖ±ÏßlÏàÇУ¬²¢ÇÒÔ²ÐÄC¹ØÓÚµãFµÄ¶Ô³ÆµãÔÚÔ²CÉÏ£¬Ö±ÏßlÓëxÖáÏཻÓÚµãP£®
£¨¢ñ£©ÇóÔ²ÐÄCµÄ¹ì¼£EµÄ·½³Ì£»
£¨¢ò£©¹ýµãFÇÒÓëÖ±Ïßl²»´¹Ö±µÄÖ±ÏßmÓëÔ²ÐÄCµÄ¹ì¼£EÏཻÓÚµãA¡¢B£¬Çó¡÷PABÃæ»ýµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ä³ÊÐΪÁ˹ÄÀøÊÐÃñ½ÚÔ¼Óõ磬ʵÐС°½×ÌÝʽ¡±µç¼Û£¬½«¸ÃÊÐÿ»§¾ÓÃñµÄÔÂÓõçÁ¿»®·ÖΪÈýµµ£¬ÔÂÓõçÁ¿²»³¬¹ý200¶ÈµÄ²¿·Ö°´0.5Ôª/¶ÈÊÕ·Ñ£¬³¬¹ý200¶Èµ«²»³¬¹ý400¶ÈµÄ²¿·Ö°´0.8Ôª/¶ÈÊÕ·Ñ£¬³¬¹ý400¶ÈµÄ²¿·Ö°´1.0Ôª/¶ÈÊÕ·Ñ£®
£¨1£©Çóij»§¾ÓÃñÓõç·ÑÓÃy£¨µ¥Î»£ºÔª£©¹ØÓÚÔÂÓõçÁ¿x£¨µ¥Î»£º¶È£©µÄº¯Êý½âÎöʽ£»
£¨2£©ÎªÁËÁ˽â¾ÓÃñµÄÓõçÇé¿ö£¬Í¨¹ý³éÑù£¬»ñµÃÁ˽ñÄê1Ô·Ý100»§¾ÓÃñÿ»§µÄÓõçÁ¿£¬Í³¼Æ·ÖÎöºóµÃµ½ÈçͼËùʾµÄƵÂÊ·Ö²¼Ö±·½Í¼£¬ÈôÕâ100»§¾ÓÃñÖУ¬½ñÄê1Ô·ÝÓõç·ÑÓò»³¬¹ý260ÔªµÄµã80%£¬Çóa£¬bµÄÖµ£»
£¨3£©ÔÚÂú×㣨2£©µÄÌõ¼þÏ£¬ÈôÒÔÕâ100»§¾ÓÃñÓõçÁ¿µÄƵÂÊ´úÌæ¸ÃÔÂÈ«ÊоÓÃñÓû§ÓõçÁ¿µÄ¸ÅÂÊ£¬ÇÒͬ×éÖеÄÊý¾ÝÓøÃ×éÇø¼äµÄÖеãÖµ´úÌæ£¬¼ÇYΪ¸Ã¾ÓÃñÓû§1Ô·ݵÄÓõç·ÑÓã¬ÇóYµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÈçͼËùʾ£¬ËıßÐÎAMNCΪµÈÑüÌÝÐΣ¬¡÷ABCΪֱ½ÇÈý½ÇÐΣ¬Æ½ÃæAMNCÓëÆ½ÃæABC´¹Ö±£¬AB=BC£¬AM=CN£¬µãO¡¢D¡¢E·Ö±ðÊÇAC¡¢MN¡¢ABµÄÖе㣮¹ýµãE×÷ƽÐÐÓÚÆ½ÃæAMNCµÄ½ØÃæ·Ö±ð½»BD¡¢BCÓÚµãF¡¢G£¬HÊÇFGµÄÖе㣮
£¨¢ñ£©Ö¤Ã÷£ºOB¡ÍEH£»
£¨¢ò£©ÈôÖ±ÏßBHÓëÆ½ÃæEFGËù³ÉµÄ½ÇµÄÕýÏÒֵΪ$\frac{{\sqrt{6}}}{3}$£¬Çó¶þÃæ½ÇD-AC-HµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=xlnx£¬x¡Ê£¨0£¬+¡Þ£©£¬Æäµ¼º¯ÊýΪf¡ä£¨x£©£¬ÏÖÓÐÈçÏÂÃüÌ⣺
¢Ù¶Ô?x1¡Ê£¨0£¬+¡Þ£©£¬?x2¡Ê£¨0£¬+¡Þ£©£¬Ê¹µÃx2f£¨x1£©£¾x1f£¨x2£©£»
¢Ú?x1¡Ê£¨0£¬+¡Þ£©£¬¶Ô?x2¡Ê£¨0£¬+¡Þ£©ÇÒx1¡Ùx2£¬Ê¹µÃf£¨x1£©-f£¨x2£©£¼x2-x1£»
¢Ûµ±a£¾3ʱ£¬¶Ô?x¡Ê£¨0£¬+¡Þ£©£¬²»µÈʽf£¨a+x£©£¼f£¨a£©•exºã³ÉÁ¢£»
¢Üµ±a£¾3ʱ£¬¶Ô?x¡Ê£¨3£¬+¡Þ£©£¬ÇÒx¡Ùaʱ£¬²»µÈʽf£¨x£©£¾f£¨a£©+f¡ä£¨a£©£¨x-a£©ºã³ÉÁ¢£»ÆäÖÐÕæÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{{e^x}-{e^{-x}}}}{{{e^x}+{e^{-x}}}}$£®
£¨¢ñ£©Ö¤Ã÷£ºf£¨x£©ÎªÆæº¯Êý£»
£¨¢ò£©ÅжÏf£¨x£©µ¥µ÷ÐÔ²¢Ö¤Ã÷£»
£¨III£©²»µÈʽf£¨x-t£©+f£¨x2-t2£©¡Ý0¶ÔÓÚx¡Ê[1£¬2]ºã³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸