精英家教网 > 高中数学 > 题目详情
9.如图所示,四边形AMNC为等腰梯形,△ABC为直角三角形,平面AMNC与平面ABC垂直,AB=BC,AM=CN,点O、D、E分别是AC、MN、AB的中点.过点E作平行于平面AMNC的截面分别交BD、BC于点F、G,H是FG的中点.
(Ⅰ)证明:OB⊥EH;
(Ⅱ)若直线BH与平面EFG所成的角的正弦值为$\frac{{\sqrt{6}}}{3}$,求二面角D-AC-H的余弦值.

分析 (Ⅰ)由题意知等腰梯形AMNC与直角△ABC所成二面角的平面角为∠BOC,则∠BOC=$\frac{π}{2}$. 得OB⊥平面AMNC.又平面AMNC∥平面EFG,则OB⊥平面EFG即可.
(Ⅱ)以O为原点,分别以$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OD}$为x轴、y轴、z轴的正方向,建立空间直角坐标系,如图所示.
设OA=a,OB=b,则O(0,0,0),A(a,0,0),B(0,a,0),D(0,0,b),C(-a,0,0).利用向量法求解.

解答 解:(Ⅰ)证明:因为点O、D分别是等腰梯形AMNC两底AC、MN的中点,所以OD⊥OC.又AB=BC,
则OB⊥AC.于是等腰梯形AMNC与直角△ABC所成二面角的平面角为∠BOC,则∠BOC=$\frac{π}{2}$.即OB⊥OD,得OB⊥平面AMNC.
又平面AMNC∥平面EFG,则OB⊥平面EFG.
因为EG?平面EFG,所以OB⊥EH.
(Ⅱ)以O为原点,分别以$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OD}$为x轴、y轴、z轴
的正方向,建立空间直角坐标系,如图所示.
设OA=a,OD=b,则O(0,0,0),A(a,0,0),B(0,a,0),D(0,0,b),C(-a,0,0).
所以E($\frac{a}{2},\frac{a}{2},0)$,F(0,$\frac{a}{2},\frac{b}{2}$),G(-$\frac{a}{2},\frac{a}{2},0)$,H(-$\frac{a}{4},\frac{a}{2},\frac{b}{4}$),有$\overrightarrow{HB}=(\frac{a}{4},\frac{a}{2},-\frac{b}{4})$,平面EFG的一个法向量为$\overrightarrow{{n}_{1}}=(0,1,0)$.
设直线BH与平面EFG所成的角为α,则sinα=|cos<$\overrightarrow{{n}_{1}},\overrightarrow{HB}>$|=$\frac{\frac{a}{2}}{\sqrt{\frac{{a}^{2}}{16}+\frac{{a}^{2}}{4}+\frac{{b}^{2}}{16}}}=\frac{\sqrt{6}}{3}$,得a=b.
设平面HAC的法向量为$\overrightarrow{{n}_{2}}=(x,y,z)$,由$\left\{\begin{array}{l}{\overrightarrow{{n}_{2}}•\overrightarrow{HA}=5x-2y-z=0}\\{\overrightarrow{{n}_{2}}•\overrightarrow{CH}=3x+2y+z=0}\end{array}\right.$,取y=1,得$\overrightarrow{{n}_{2}}=(0,1,-2)$,
所以cos<$\overrightarrow{{n}_{1}},\overrightarrow{{n}_{2}}$>=$\frac{\sqrt{5}}{5}$,
因为二面角D-AC-H为锐二面角,所以二面角D-AC-H的余弦值为$\frac{\sqrt{5}}{5}$.

点评 本题考查了空间线线、线面位置关系,即向量法求空间角,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知点A,B是抛物线y2=4x上的两点,点M(3,2)是线段AB的中点,则|AB|的值为(  )
A.4B.4$\sqrt{2}$C.8D.8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,矩形ACEF和等边三角形ABC中,AC=2,CE=1,平面ABC⊥平面ACEF.M是线段EF上的一个动点.
(1)若BM⊥AC,确定M的位置,并说明理由;
(2)求三棱锥C-ABM的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点分别为F1、F2,D为椭圆短轴上的一个顶点,DF1的延长线与椭圆相交于G.△DGF2的周长为8,|DF1|=3|GF1|.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的左顶点A作椭圆E的两条互相垂直的弦AB、AC,试问直线BC是否恒过定点?若是,求出此定点的坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=|x+a|,g(x)=|x+3|-x,记关于x的不等式f(x)<g(x)的解集为M.
(1)若a-3∈M,求实数a的取值范围;
(2)若[-1,1]⊆M,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.
(1)若PA=PD,求证:平面PQB⊥平面PAD;
(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上且满足PC=3PM,求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知过抛物线y2=4x焦点F的直线l交抛物线于A、B两点(点A在第一象限),若$\overrightarrow{AF}$=3$\overrightarrow{FB}$,则直线l的斜率为(  )
A.2B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示,由直线x=a,x=a+1(a>0),y=x2及 x 轴围成的曲边梯形的面积介于相应小矩形与大矩形的面积之间,即 a2<$\int_a^{a+1}{\;}$x2dx<(a+1)2.类比之,若对?n∈N*,不等式$\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$<A<$\frac{1}{n}$+$\frac{1}{n+1}$+…+$\frac{1}{2n-1}$恒成立,则实数A等于(  )
A.ln$\frac{5}{2}$B.ln 2C.$\frac{1}{2}$ln 2D.$\frac{1}{2}$ln 5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦点分别为F1,F2,点P在椭圆C上,满足$\overrightarrow{P{F_1}}•\overrightarrow{{F_1}{F_2}}=0,|{\overrightarrow{P{F_1}}}|=\frac{{\sqrt{5}}}{5},|{\overrightarrow{P{F_2}}}|=\frac{{9\sqrt{5}}}{5}$.
(1)求椭圆C的方程.
(2)设过点D(0,2)的直线l与椭圆C相交于不同的两点M、N,且N在D、M之间,设$\overrightarrow{DN}=λ\overrightarrow{DM}$,求λ的取值范围.

查看答案和解析>>

同步练习册答案