精英家教网 > 高中数学 > 题目详情
18.若函数$f(x)=\frac{x-b}{x-a}$在区间(-∞,4]上是增函数,则有(  )
A.a>b>4B.a>4>bC.4<a<bD.a<4<b

分析 求出函数的导数,根据函数的单调性求出a,b的范围即可.

解答 解:求导函数可得f′(x)=$\frac{b-a}{{(x-a)}^{2}}$,
令f′(x)>0,可得b-a>0,∴a<b
∵函数f(x)的单调区间为(-∞,a),(a,+∞),
函数f(x)在区间(-∞,4]上是增函数,
∴a>4
∴4<a<b,
故选:C.

点评 本题考查了函数的单调性问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=msinx+ncosx,且$f(\frac{π}{4})$是它的最大值(其中m,n为常数,且mn≠0),给出下列命题:
①$f(x+\frac{π}{4})$为偶函数                  
②函数f(x)的图象关于点$(\frac{7π}{4},0)$对称
③$f(-\frac{3π}{4})$是函数f(x)的最小值       
④函数f(x)的图象在y轴右侧与直线$y=\frac{m}{2}$的交点按横坐标从小到大依次记为P1,P2,P3,P4,…,则|P2P4|=π;
则正确的命题个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.甲,乙两位数学爱好者玩抛掷骰子的游戏,甲先掷一枚骰子,记向上的点数为a,乙后掷一枚骰子,记向上的点数为b.
(1)求事件“a+b≥9”的概率;
(2)游戏规定:ab≥10时,甲赢;否则,乙赢.问:这个游戏规定公平吗?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若tanα=2,则$\frac{sin(\frac{π}{2}-α)+sin(π+α)}{3cos(2π-α)-sin(π-α)}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若$tanθ=\sqrt{3}$,则$\frac{sinθ+cosθ}{sinθ-cosθ}$=(  )
A.$2+\sqrt{3}$B.$-2-\sqrt{3}$C.$2-\sqrt{3}$D.$-2+\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x、y同时满足以下三个条件:①x-y+2≤0;②x≥1;③x+y-7≤0,则$\frac{y}{x}$的取值范围是[$\frac{9}{5}$,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l经过直线l1:2x-3y+4=0与直线l2:x+2y-5=0的交点P,且与两坐标轴的正半轴围成的三角形的面积是$\frac{9}{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a,b是常数,函数f(x)=ax3+bln(x+$\sqrt{1+{x}^{2}}$)+3在(-∞,0)上的最大值为10,则f(x)在(0,+∞)上的最小值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设等差数列{an}的前n项和为Sn,已知a3=24,a6=18.
(1)求数列{an}的通项公式及前n项和Sn的表达式;
(2)当n为何值时,Sn最大,并求Sn的最大值.

查看答案和解析>>

同步练习册答案