在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,
).若S1,S2,S3分别是三棱锥D ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则( )
A.S1=S2=S3 B.S2=S1且S2≠S3
C.S3=S1且S3≠S2 D.S3=S2且S3≠S1
科目:高中数学 来源: 题型:
如图14所示,在四棱锥P ABCD中,PA⊥底面ABCD, AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明:BE⊥DC;
(2)求直线BE与平面PBD所成角的正弦值;
(3)若F为棱PC上一点,满足BF⊥AC,求二面角F AB P的余弦值.
![]()
图14
查看答案和解析>>
科目:高中数学 来源: 题型:
如图16所示,四棱柱ABCD A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.
(1)证明:O1O⊥底面ABCD;
(2)若∠CBA=60°,求二面角C1OB1D的余弦值.
![]()
图16
查看答案和解析>>
科目:高中数学 来源: 题型:
三棱锥A BCD及其侧视图、俯视图如图14所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.
(1)证明:P是线段BC的中点;
(2)求二面角A NP M的余弦值.
![]()
图14
查看答案和解析>>
科目:高中数学 来源: 题型:
如图X261所示,在正方体ABCD A1B1C1D1中,M,N分别是棱C1D1,C1C的中点.给出以下四个结论:
①直线AM与直线C1C相交;
②直线AM与直线BN平行;
③直线AM与直线DD1异面;
④直线BN与直线MB1异面.
其中正确结论的序号为________(填入所有正确结论的序号).
![]()
图X261
查看答案和解析>>
科目:高中数学 来源: 题型:
椭圆E:
+
=1(a>b>0)的离心率为
,且以原点为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+
=0相切.
(1)求椭圆E的方程;
(2)已知直线l过点M(﹣
,0)且与开口向上,顶点在原点的抛物线C切于第二象限的一点N,直线l与椭圆E交于A、B两点,与y轴交于D点,若
=λ
,
=μ
,且λ+μ=﹣4,求抛物线C的标准方程.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com