如图16所示,四棱柱ABCD A1B1C1D1的所有棱长都相等,AC∩BD=O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形.
(1)证明:O1O⊥底面ABCD;
(2)若∠CBA=60°,求二面角C1OB1D的余弦值.
![]()
图16
解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD.
因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD.
由题设知,O1O∥C1C.故O1O⊥底面ABCD.
(2)方法一: 如图(a),过O1作O1H⊥OB1于H,连接HC1.
由(1)知,O1O⊥底面ABCD,所以O1O⊥底面A1B1C1D1,于是O1O⊥A1C1.
![]()
图(a)
又因为四棱柱ABCD A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形,
因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1.
进而OB1⊥C1H.故∠C1HO1是二面角C1OB1D的平面角.
不妨设AB=2.因为∠CBA=60°,所以OB=
,OC=1,OB1=
.
在Rt△OO1B1中,易知O1H=
=2
.而O1C1=1,于是C1H=
=![]()
即二面角C1OB1D的余弦值为
.
方法二:因为四棱柱ABCD A1B1C1D1的所有棱长都相等,所以四边形ABCD是菱形,因此AC⊥BD.又O1O⊥底面ABCD,从而OB,OC,OO1两两垂直.
![]()
图(b)
如图(b),以O为坐标原点,OB,OC,OO1所在直线分别为x轴,y轴,z轴,建立空间直角坐标系O xyz,不妨设AB=2.因为∠CBA=60°,所以OB=
,OC=1,于是相关各点的坐标为O(0,0,0),
B1(
,0,2),C1(0,1,2).
易知,n1=(0,1,0)是平面BDD1B1的一个法向量.
故二面角C1OB1D的余弦值为
.
科目:高中数学 来源: 题型:
国庆节放假,甲去北京旅游的概率为
,乙、丙去北京旅游的概率分别为
,
.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
三棱锥A BCD及其侧视图、俯视图如图14所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN⊥NP.
(1)证明:P是线段BC的中点;
(2)求二面角A NP M的余弦值.
![]()
图14
查看答案和解析>>
科目:高中数学 来源: 题型:
如图16,四棱锥P ABCD中,ABCD为矩形,平面PAD⊥平面ABCD.
![]()
图16
(1)求证:AB⊥PD.
(2)若∠BPC=90°,PB=
,PC=2,问AB为何值时,四棱锥P ABCD的体积最大?并求此时平面BPC与平面DPC夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图13,四棱锥PABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设二面角DAEC为60°,AP=1,AD=
,求三棱锥EACD的体积.
![]()
图13
查看答案和解析>>
科目:高中数学 来源: 题型:
如图15,三棱柱ABC A1B1C1中,侧面BB1C1C为菱形,AB⊥B1C.
![]()
图15
(1)证明:AC=AB1;
(2)若AC⊥AB1,∠CBB1=60°,AB=BC,求二面角A A1B1 C1的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
在空间直角坐标系Oxyz中,已知A(2,0,0),B(2,2,0),C(0,2,0),D(1,1,
).若S1,S2,S3分别是三棱锥D ABC在xOy,yOz,zOx坐标平面上的正投影图形的面积,则( )
A.S1=S2=S3 B.S2=S1且S2≠S3
C.S3=S1且S3≠S2 D.S3=S2且S3≠S1
查看答案和解析>>
科目:高中数学 来源: 题型:
椭圆
的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com