精英家教网 > 高中数学 > 题目详情
已知多项式f(n)=n5n4n3n.
(1)求f(-1)及f(2)的值;
(2)试探求对一切整数nf(n)是否一定是整数?并证明你的结论.
(1)0,17(2)见解析
(1)f(-1)=0,f(2)=17
(2)先用数学归纳法证明,对一切正整数nf(n)是整数.
①当n=1时,f(1)=1,结论成立.
②假设当nk(k≥1,k∈N)时,结论成立,即f(k)=k5k4k3k是整数,则当nk+1时,f(k+1)=(k+1)5(k+1)4(k+1)3(k+1)

(k+1)=f(k)+k4+4k3+6k2+4k+1.
根据假设f(k)是整数,而k4+4k3+6k2+4k+1显然是整数.
f(k+1)是整数,从而当nk+1时,结论也成立.
由①、②可知对一切正整数nf(n)是整数.
(Ⅰ)当n=0时,f(0)=0是整数
(Ⅱ)当n为负整数时,令n=-m,则m是正整数,由(Ⅰ)知f(m)是整数,
所以f(n)=f(-m)=(-m)5(-m)4(-m)3(-m)
=-m5m4m3m=-f(m)+m4是整数.
综上,对一切整数nf(n)一定是整数.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

用火柴棒摆“金鱼”,如图所示:

按照上面的规律,第4个“金鱼”图需要火柴棒的根数为
A.24B.26C.28D.30

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”的第二步是____.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用数学归纳法证明n(ab是非负实数,n∈N)时,假设n
k命题成立之后,证明nk+1命题也成立的关键是________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

用数学归纳法证明1+++…+<n(n∈N*,n>1)时,第一步应验证的不等式是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在正整数集上的函数,且满足:“当成立时,总可推出成立”,那么,下列命题总成立的是 (  )
A.若成立,则成立
B.若成立,则当时,均有成立
C.若成立,则成立
D.若成立,则当时,均有成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列的前项和为,且对任意都有:
(1)求
(2)猜想的表达式并证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知一个命题P(k),k=2n(n∈N),若n =1,2,…,1000时,P(k)成立,且当时它也成立,下列判断中,正确的是(   )
A.P(k)对k=2013成立B.P(k)对每一个自然数k成立
C.P(k)对每一个正偶数k成立D.P(k)对某些偶数可能不成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知数列{}的前n项和为 ,满足,计算,并猜想的表达式.

查看答案和解析>>

同步练习册答案