精英家教网 > 高中数学 > 题目详情

已知函数f(x)的图象是在[a,b]上连续不断的曲线,定义:f1(x)=min{f(t)|a≤t≤x},(x∈[a,b]);f2(x)=max{f(t)|a≤t≤x},(x∈[a,b])其中,min{f(t)|t∈D}表示函数f(t)在D上的最小值,max{f(t)|t∈D}表示函数f(t)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数数学公式
(1)求f1(x),f2(x)的表达式;
(2)判断f(x)是否为数学公式上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由.

解:(1)由题意可得,.…
(2)f2(x)-f1(x)=2sinx.…
若f(x)是为上的“k阶收缩函数”,则2sinx≤kx在上恒成立…
,使得2sinx>(k-1)x成立.…
,则φ′(x)=cosx-1<0.…
∴φ(x)=sinx-x在单调递减,
,即sinx-x≤0…
于是2sinx≤2x在恒成立.
,2sinx>x成立
故存在最小的正整数k=2,使得f(x)是为上的“k阶收缩函数”…
分析:(1)利用新定义,代入计算,可得f1(x),f2(x)的表达式;
(2)由题意,f2(x)-f1(x)=2sinx,若f(x)是为上的“k阶收缩函数”,则2sinx≤kx在上恒成立,且,使得2sinx>(k-1)x成立,构建新函数φ(x)=sinx-x,判断函数在单调递减,即可求得结论.
点评:本题考查新定义,考查导数知识的运用,考查学生对新问题的理解,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的图象有且仅有由五个点构成,它们分别为(1,2),(2,3),(3,3),(4,2),(5,2),则f(f(f(5)))=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•天门模拟)已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x)+2.数列{an}满足a1=λ-2,2an+1=
2n,n为奇数
f(an),n为偶数

(I)求f(n)(n∈N*)的表达式;
(II)设λ=3,求a1+a2+a3+…+a2n
(III)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于原点对称,且当x<0时,f(x)=2x-4,那么当x>0时,f(x)=
2x+4
2x+4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•焦作一模)已知函数f(x)的图象过点(
π
4
,-
1
2
),它的导函数f′(x)=Acos(ωx+φ)(x∈R)的图象的一部分如图所示,其中A>0,ω>0,|φ|<
π
2
,为了得到函
数f(x)的图象,只要将函数y=sinx(x∈R)的图象上所有的点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象关于直线x=2对称,且当x≠2时其导函数f′(x)满足xf′(x)>2f′(x),若2<a<4,则下列表示大小关系的式子正确的是(  )
A、f(2a)<f(3)<f(log2a)B、f(3)<f(log2a)<f(2a)C、f(log2a)<f(3)<f(2a)D、f(log2a)<f(2a)<f(3)

查看答案和解析>>

同步练习册答案