精英家教网 > 高中数学 > 题目详情
2.四棱锥P-ABCD中,平面PAD⊥平面ABCD,△BCD的边长为$\sqrt{3}$的等边三角形,AD=2,AB=1,点F在线段AP上.
(Ⅰ)求证:CD⊥平面PAD;
(Ⅱ)若BF∥平面PCD,△PAD是等边三角形,求点F到平面PCD的距离.

分析 (Ⅰ)根据面面垂直的性质定理证明平面PAD⊥平面ABCD即可证明CD⊥平面PAD;
(Ⅱ)根据点到平面的距离的定义作出点F到平面的距离,结合三角形的边角关系进行求解即可.

解答 解:(Ⅰ)∵AB=1,AD=2,BD=$\sqrt{3}$,
∴cos∠ADB=$\frac{A{D}^{2}+B{D}^{2}-A{B}^{2}}{2AD•BD}$=$\frac{\sqrt{3}}{2}$,
则∠ADB=30°,
∵△BCD是等边三角形,∴∠BDC=60°,
∴∠ADC=∠ADB+∠BDC=90°,即CD⊥AD,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
CD?平面ABCD,
∴CD⊥平面PAD
(Ⅱ) 在平面ABCD内过B作BG∥CD,交AD于G,BG?平面PCD,CD?平面PCD,
则BG∥平面PCD,
由(1)得CD⊥AD,∴BG⊥AD,
连接GF,
∵BF∥平面PCD,BF,BG?平面FBG,BF∩BG=B,
∴平面FBG∥平面PCD,
∵平面PAD分别交平面FBG,PCD于FG,PD,
∴FG∥PD,
∴$\frac{PF}{PA}=\frac{DG}{DA}$,
则直角三角形BGD中,BD=$\sqrt{3}$,∠BDG=30°,
DG=BDcos30°=$\frac{3}{2}$,
∴$\frac{PF}{PA}=\frac{DG}{DA}$=$\frac{\frac{3}{2}}{2}$=$\frac{3}{4}$,
在平面PAD内过F作FH⊥PD于H,
∵CD⊥平面PAD,面FHC?面PAD,
∴CD⊥FH,
∵PD,CD?平面PCD,PD∩CD=D,
∴FH⊥平面PCD于H,
则FH是点F到平面PCD的距离.
过A作AM⊥PD于M,
∵△PAD是边长为2的等边三角形,
∴AM=$\frac{\sqrt{3}}{2}×2$=$\sqrt{3}$,
∵FH∥AM,∴$\frac{FH}{AM}$=$\frac{PF}{PA}=\frac{DG}{DA}$=$\frac{3}{4}$,
∴FH=$\frac{3}{4}$AM=$\frac{3\sqrt{3}}{4}$,
即点F到平面PCD的距离是$\frac{3\sqrt{3}}{4}$.

点评 本题主要考查考查空间直线和平面垂直的判断以及点到直线的距离的计算,根据相应的判定定理和性质定理以及点到平面的距离的定义是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知底面为正方形的四棱锥P-ABCD内接于半径为1的球.顶点P在底面ABCD上的射影是ABCD的中心.当四棱锥P-ABCD的体积最大时,四棱锥的高为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则此多面体的体积等于(  )
A.$\frac{32}{3}$B.16C.$\frac{64}{3}$D.32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,网格纸上正方形小格的边长为1,图中粗线画出的是某四棱锥的三视图,则该四棱锥的四个侧面中面积最大的一个侧面的面积为(  )
A.8$\sqrt{6}$B.8$\sqrt{2}$C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=$\sqrt{4x-3}$+$\sqrt{11-4x}$($\frac{3}{4}$<x<$\frac{11}{4}$)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若正实数x,y,z满足x2+y2=9,x2+z2+xz=16,y2+z2+$\sqrt{3}$yz=25,则2xy+$\sqrt{3}$xz+yz=18.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在数列{an}中,己知a1=1,an-1=(1-$\frac{1}{n}$)an-$\frac{n-1}{{2}^{n-1}}$(n≥2且n∈N*
(1)若bn=$\frac{{a}_{n}}{n}$,求数列{bn}的通项公式;
(2)记数列{an}的前项和为Sn,问在△ABC中是否存在内角θ使Sn-n•tan2θ+5≥$\frac{n+2}{{2}^{n-1}}$对任意的n∈N*恒成立,若存在,求出角θ的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,一个用斜二测法画出的水平放置的平面直观图,是一个直角梯形,O′A=5,AB=2,BD=3,∠O′AB=∠ABD=90°,则它的实际图形和面积分别是(  )
A.直角梯形、面积是16$\sqrt{2}$B.直角梯形、面积是8
C.梯形非直角,面积是16D.梯形非直角,面积是8$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.M是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,以Fx为始边,FM为终边的角∠xFM=60°,若|FM|=4,则p=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案