7£®ÒÑÖªÖ±ÏßL£º$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$ÓëÇúÏßC£º$\left\{\begin{array}{l}{x=\sqrt{2}cos¦È}\\{y=sin¦È}\end{array}\right.$ÏཻÓÚA£¬BÁ½µã£¬µãFµÄ×ø±êΪ£¨1£¬0£©£®
£¨1£©Çó¡÷ABFµÄÖܳ¤£»
£¨2£©ÈôµãE£¨-1£¬0£©Ç¡ÎªÏß¶ÎABµÄÈýµÈ·Öµã£¬ÇóÈý½ÇÐÎABFµÄÃæ»ý£®

·ÖÎö £¨1£©ÔËÓÃͬ½ÇµÄƽ·½¹ØÏµºÍ´úÈë·¨£¬»¯²ÎÊý·½³ÌΪÆÕͨ·½³Ì£¬ÔÙÓÉÍÖÔ²µÄ¶¨Ò壬¼´¿ÉµÃµ½ËùÇóÈý½ÇÐÎABFµÄÖܳ¤£»
£¨2£©ÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÏûÈ¥x£¬ÔËÓÃΤ´ï¶¨ÀíºÍÈýµÈ·Öµã£¬ÇóµÃ|y1-y2|£¬½ø¶øÔËÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½£¬¼ÆËã¼´¿ÉµÃµ½£®

½â´ð ½â£º£¨1£©ÇúÏßC£º$\left\{\begin{array}{l}{x=\sqrt{2}cos¦È}\\{y=sin¦È}\end{array}\right.$»¯ÎªÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{2}$+y2=1£¬
Ö±ÏßL£º$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$»¯ÎªÆÕͨ·½³ÌΪy=tan¦Á•£¨x+1£©£¬
Ö±Ïߺã¹ýÍÖÔ²µÄ×ó½¹µãF'£¨-1£¬0£©£¬
ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃ£¬¡÷ABFµÄÖܳ¤Îª|AF'|+|AF|+|BF'|+|BF|=4a=4$\sqrt{2}$£»
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÏûÈ¥x£¬¿ÉµÃ£¬
£¨2+cot2¦Á£©y2-2cot¦Á•y-1=0£¬
Ôòy1+y2=$\frac{2cot¦Á}{2+co{t}^{2}¦Á}$£¬y1y2=-$\frac{1}{2+co{t}^{2}¦Á}$£¬¢Ù
µãE£¨-1£¬0£©Ç¡ÎªÏß¶ÎABµÄÈýµÈ·Öµã£¬¼´ÓÐ2y1=-y2£¬¢Ú
½âµÃcot¦Á=¡À$\frac{\sqrt{14}}{7}$£¬
Ôò¡÷ABFµÄÃæ»ýΪS=$\frac{1}{2}$|FF'|•|y1-y2|=|y1-y2|=$\sqrt{£¨{y}_{1}+{y}_{2}£©^{2}-4{y}_{1}{y}_{2}}$
=$\sqrt{£¨\frac{¡À\frac{2\sqrt{14}}{7}}{2+\frac{2}{7}}£©^{2}+\frac{4}{2+\frac{2}{7}}}$=$\frac{3\sqrt{14}}{8}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é²ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯£¬Í¬Ê±¿¼²éÍÖÔ²µÄ¶¨ÒåºÍÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÎªÁ˽âij°àѧÉúϲ°®´òÀºÇòÊÇ·ñÓëÐÔ±ðÓйأ¬¶Ô±¾°à50È˽øÐÐÁËÎʾíµ÷²éµÃµ½ÁËÈçϵÄÁÐÁª±í£º
ϲ°®´òÀºÇò²»Ï²°®´òÀºÇòºÏ¼Æ
ÄÐÉú5
Å®Éú10
ºÏ¼Æ50
¼ºÖªÔÚÈ«²¿50ÈËÖÐËæ»ú³éÈ¡1È˳鵽²»Ï²°®´òÀºÇòµÄѧÉúµÄ¸ÅÂÊΪ$\frac{2}{5}$£®
£¨1£©Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£»
£¨2£©ÊÇ·ñÓÐ99.5%µÄ°ÑÎÕÈÏΪϲ°®´òÀºÇòÓëÐÔ±ðÓйأ¿ËµÃ÷ÄãµÄÀíÓÉ£º
£¨3£©¼ºÖªÏ²°®´òÀºÇòµÄ10λŮÉúÖУ¬A1£¬A2£¬A3»¹Ï²»¶´òƹÅÒÇò£¬B1£¬B2£¬B3»¹Ï²»¶´òÓðëÇò£¬C1£¬C2»¹Ï²»¶Ìß×ãÇò£¬ÏÖÔÚ´Óϲ»¶´òƹÅÒÇò¡¢Ï²»¶´òÓðëÇò¡¢Ï²»¶Ìß×ãÇòµÄ8λŮÉúÖи÷Ñ¡³ö1Ãû½øÐÐÆäËû·½ÃæµÄµ÷²é£¬ÇóB1ºÍC1²»È«±»Ñ¡ÖеĸÅÂÊ£®£¨ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£©
p£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
£¨²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÔĶÁÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔËÐÐÏàÓ¦µÄ³ÌÐò£¬ÈôÊä³öµÄ½á¹ûs=9£¬ÔòͼÖÐÁâÐÎÄÚÓ¦¸ÃÌîдµÄÄÚÈÝÊÇ£¨¡¡¡¡£©
A£®n£¼2B£®n£¼3C£®n£¼4D£®a£¼3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÈôÊýÁÐ{an}Âú×ãa1=1£¬an+$\frac{1}{{a}_{n}}$=2£¬ÇóSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÉèÊýÁÐ{an}µÄǰnÏîºÍSn=2an-2£¬ÊýÁÐ{bn}Âú×ãbn=$\frac{1}{£¨n+1£©lo{g}_{2}{a}_{n}}$
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªSnΪÕýÏîÊýÁÐ{an}µÄǰnÏîºÍ£¬Sn=$\frac{1}{2}$an2+$\frac{1}{2}$an£¬n¡ÊN+£¬Çó{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬²¢ÇÒ2£¬an£¬Sn³ÉµÈ²îÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=$\frac{log{{\;}_{2}a}_{n}}{{a}_{n}}$£®ÇóÊýÁÐ{bn}ǰnÏîºÍΪTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=x-alnx£¬g£¨x£©=-$\frac{1}{x}$£¬a¡ÊR£»
£¨1£©Éèh£¨x£©=f£¨x£©+g£¨x£©£¬Èôh£¨x£©ÔÚ¶¨ÒåÓòÄÚ´æÔÚ¼«Öµ£¬ÇóaµÄȡֵ·¶Î§£»
£¨2£©Éèf¡ä£¨x£©ÊÇf£¨x£©µÄµ¼º¯Êý£¬Èô0£¼x1£¼x2£¬a¡Ù0£¬f¡ä£¨t£©=$\frac{{f£¨{x_2}£©-f£¨{x_1}£©}}{{{x_2}-{x_1}}}$£¨x1£¼t£¼x2£©£¬ÇóÖ¤£ºt£¼$\frac{{{x_1}+{x_2}}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª¡÷ABCÈý¸ö¶¥µã·Ö±ðΪA£¨1£¬0£©£¬B£¨1£¬4£©£¬C£¨3£¬2£©£¬Ö±Ïßl¾­¹ýµã£¨0£¬4£©£®
£¨1£©ÇóÖ¤£º¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ»
£¨2£©Çó¡÷ABCÍâ½ÓÔ²¡ÑMµÄ·½³Ì£»
£¨3£©ÈôÖ±ÏßlÓë¡ÑMÏཻÓÚP£¬QÁ½µã£¬ÇÒPQ=2$\sqrt{3}$£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸