17£®ÎªÁ˽âij°àѧÉúϲ°®´òÀºÇòÊÇ·ñÓëÐÔ±ðÓйأ¬¶Ô±¾°à50È˽øÐÐÁËÎʾíµ÷²éµÃµ½ÁËÈçϵÄÁÐÁª±í£º
ϲ°®´òÀºÇò²»Ï²°®´òÀºÇòºÏ¼Æ
ÄÐÉú5
Å®Éú10
ºÏ¼Æ50
¼ºÖªÔÚÈ«²¿50ÈËÖÐËæ»ú³éÈ¡1È˳鵽²»Ï²°®´òÀºÇòµÄѧÉúµÄ¸ÅÂÊΪ$\frac{2}{5}$£®
£¨1£©Ç뽫ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£»
£¨2£©ÊÇ·ñÓÐ99.5%µÄ°ÑÎÕÈÏΪϲ°®´òÀºÇòÓëÐÔ±ðÓйأ¿ËµÃ÷ÄãµÄÀíÓÉ£º
£¨3£©¼ºÖªÏ²°®´òÀºÇòµÄ10λŮÉúÖУ¬A1£¬A2£¬A3»¹Ï²»¶´òƹÅÒÇò£¬B1£¬B2£¬B3»¹Ï²»¶´òÓðëÇò£¬C1£¬C2»¹Ï²»¶Ìß×ãÇò£¬ÏÖÔÚ´Óϲ»¶´òƹÅÒÇò¡¢Ï²»¶´òÓðëÇò¡¢Ï²»¶Ìß×ãÇòµÄ8λŮÉúÖи÷Ñ¡³ö1Ãû½øÐÐÆäËû·½ÃæµÄµ÷²é£¬ÇóB1ºÍC1²»È«±»Ñ¡ÖеĸÅÂÊ£®£¨ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£©
p£¨K2¡Ýk£©0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
£¨²Î¿¼¹«Ê½£ºK2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$£¬ÆäÖÐn=a+b+c+d£©

·ÖÎö £¨1£©¸ù¾ÝÊý¾Ý¼´¿É½«ÉÏÃæµÄÁÐÁª±í²¹³äÍêÕû£»
£¨2£©Çó³öK2£¬½áºÏÁÙ½çÖµ±í½øÐÐÅжϼ´¿É£®
£¨3£©ÀûÓÃÁоٷ¨½øÐÐÇó½â¼´¿ÉµÃµ½½áÂÛ£®

½â´ð ½â£º£¨1£©±í¸ñÌî¿ÕÈçÏ£º

ϲ°®´òÀºÇò²»Ï²°®´òÀºÇòºÏ¼Æ
ÄÐÉú20525
Å®Éú101525
ºÏ¼Æ302050
¡­£¨2·Ö£©
£¨2£©¡ß${K^2}=\frac{{50¡Á{{£¨20¡Á15-10¡Á5£©}^2}}}{30¡Á20¡Á25¡Á25}¡Ö8.333£¾7.879$£®¡­£¨4·Ö£©
¡àÓÐ99.5%µÄ°ÑÎÕÈÏΪϲ°®´òÀºÇòÓëÐÔ±ðÓйأ®¡­£¨6·Ö£©
£¨3£©´Óϲ»¶´òƹÅÒÇò¡¢Ï²»¶´òÓðëÇò¡¢Ï²»¶Ìß×ãÇòµÄ8λŮÉúÖи÷Ñ¡1Ãû£¬ÆäÒ»ÇпÉÄܵĽá¹û×é³ÉµÄ»ù±¾Ê¼þÈçÏ£º$\begin{array}{l}£¨{A_1}£¬{B_1}£¬{C_1}£©£¬£¨{A_1}£¬{B_1}£¬{C_2}£©£¬£¨{A_1}£¬{B_2}£¬{C_1}£©£¬£¨{A_1}£¬{B_2}£¬{C_2}£©£¬£¨{A_1}£¬{B_3}£¬{C_1}£©£¬£¨{A_1}£¬{B_3}£¬{C_2}£©£¬\\£¨{A_2}£¬{B_1}£¬{C_1}£©£¬£¨{A_2}£¬{B_1}£¬{C_2}£©£¬£¨{A_2}£¬{B_2}£¬{C_1}£©£¬£¨{A_2}£¬{B_2}£¬{C_2}£©£¬£¨{A_2}£¬{B_3}£¬{C_1}£©£¬£¨{A_2}£¬{B_3}£¬{C_2}£©£¬\\£¨{A_3}£¬{B_1}£¬{C_1}£©£¬£¨{A_3}£¬{B_1}£¬{C_2}£©£¬£¨{A_3}£¬{B_2}£¬{C_1}£©£¬£¨{A_3}£¬{B_2}£¬{C_2}£©£¬£¨{A_3}£¬{B_3}£¬{C_1}£©£¬£¨{A_3}£¬{B_3}£¬{C_2}£©£¬\end{array}$¡­£¨8·Ö£©
»ù±¾Ê¼þµÄ×ÜÊýΪ18£¬ÓÃM±íʾ¡°B1£¬C1²»È«±»Ñ¡ÖС±Õâһʼþ£¬
ÔòÆä¶ÔÁ¢Ê¼þ$\overline M$±íʾ¡°B1£¬C1È«±»Ñ¡ÖС±Õâһʼþ£¬
ÓÉÓÚ$\overline M$ÓÉ£¨A1£¬B1£¬C1£©£¬£¨A2£¬B1£¬C1£©£¬£¨A3£¬B1£¬C1£©£¬3¸ö»ù±¾Ê¼þ×é³É£¬¡­£¨10·Ö£©
ËùÒÔ$P£¨\overline M£©=\frac{3}{18}=\frac{1}{6}$£®¡­£¨11·Ö£©
ÓɶÔÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½µÃ$P£¨\overline M£©=1-P£¨M£©=1-\frac{1}{6}=\frac{5}{6}$£®¡­£¨12·Ö£©

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦ÓÃÒÔ¼°¹Åµä¸ÅÐ͵ĸÅÂʵļÆË㣬ÀûÓÃÁоٷ¨Êǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑ֪żº¯Êýf£¨x£©ÔÚ[0£¬+¡Þ£©Éϵ¥µ÷µÝÔö£¬ÇÒf£¨a+1£©£¾f£¨a-1£©£¬ÔòʾÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨0£¬+¡Þ£©B£®[0£¬+¡Þ£©C£®£¨-¡Þ£¬0£©D£®£¨-1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$µÄ¼Ð½ÇΪ$\frac{2¦Ð}{3}$£¬|$\overrightarrow{b}$|=1£¬ÇÒ¶ÔÈÎÒâʵÊýx£¬²»µÈʽ|$\overrightarrow{a}$+x$\overrightarrow{b}$|¡Ý|$\overrightarrow{a}$+$\overrightarrow{b}$|ºã³ÉÁ¢£¬Ôò|$\overrightarrow{a}$|=£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®1C£®2D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÔÚÔ²×¶POÖУ¬ÒÑÖª¸ßPO=2£¬µ×ÃæÔ²µÄ°ë¾¶Îª4£¬MΪĸÏßPBÉÏÒ»µã£»¸ù¾ÝÔ²×¶ÇúÏߵ͍Ò壬ÏÂÁÐËĸöͼÖеĽØÃæ±ß½çÇúÏß·Ö±ðΪԲ¡¢ÍÖÔ²¡¢Ë«ÇúÏß¼°Å×ÎïÏߣ¬ÏÂÃæËĸöÃüÌ⣬ÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©   
¢ÙÔ²µÄÃæ»ýΪ4¦Ð£»
¢ÚÍÖÔ²µÄ³¤ÖáΪ$\sqrt{37}$£»
¢ÛË«ÇúÏßÁ½½¥½üÏߵļнÇΪ¦Ð-arcsin$\frac{4}{5}$£»
¢ÜÅ×ÎïÏßÖн¹µãµ½×¼ÏߵľàÀëΪ$\frac{{4\sqrt{5}}}{5}$£®
A£®1 ¸öB£®2 ¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬±ß³¤Îª2µÄÕý·½ÐÎABCDËùÔÚÆ½ÃæÓëÔ²OËùÔÚÆ½ÃæÏཻÓÚCD£¬CEΪԲOµÄÖ±¾¶£¬Ïß¶ÎCDΪԲOµÄÏÒ£¬AE´¹Ö±ÓÚÔ²OËùÔÚÆ½Ã棬ÇÒAE=1
£¨1£©ÇóÒìÃæÖ±ÏßCBÓëDEËù³É½ÇµÄ´óС£»
£¨2£©½«¡÷ACD£¨¼°ÆäÄÚ²¿£©ÈÆAEËùÔÚÖ±ÏßÐýתһÖÜÐγÉÒ»¼¸ºÎÌ壬Çó¸Ã¼¸ºÎÌåÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=2£¬an+1=$\frac{2£¨n+2£©}{n+1}$an£¨n¡ÊN*£©
£¨I£©Çó{an}µÄͨÏʽ£»
£¨II£©Éè{an}µÄǰnÏîºÍΪSn£¬Ö¤Ã÷£º$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+¡­+$\frac{1}{{S}_{n}}$¡Ü$\frac{n}{n+1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®µãCÔÚÏß¶ÎABÉÏ£¬ÇÒ|$\overrightarrow{AC}$|=$\frac{5}{2}$|$\overrightarrow{CB}$|£¬Ôò$\overrightarrow{BC}$=k$\overrightarrow{AB}$£¬ÔòkµÄÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{5}{7}$B£®-$\frac{5}{7}$C£®-$\frac{2}{7}$D£®$\frac{2}{7}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªº¯Êýf£¨x£©µÄµ¼º¯ÊýΪf¡ä£¨x£©£¬Âú×ãxf¡ä£¨x£©+2f£¨x£©=$\frac{lnx}{x}$£¬ÇÒf£¨e£©=$\frac{1}{2e}$£¬Ôòf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷ÐÔΪ£¨¡¡¡¡£©
A£®ÏÈÔöºó¼õB£®µ¥µ÷µÝÔöC£®µ¥µ÷µÝ¼õD£®ÏȼõºóÔö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÖ±ÏßL£º$\left\{\begin{array}{l}{x=-1+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$ÓëÇúÏßC£º$\left\{\begin{array}{l}{x=\sqrt{2}cos¦È}\\{y=sin¦È}\end{array}\right.$ÏཻÓÚA£¬BÁ½µã£¬µãFµÄ×ø±êΪ£¨1£¬0£©£®
£¨1£©Çó¡÷ABFµÄÖܳ¤£»
£¨2£©ÈôµãE£¨-1£¬0£©Ç¡ÎªÏß¶ÎABµÄÈýµÈ·Öµã£¬ÇóÈý½ÇÐÎABFµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸