分析 (1)说明∠ADE为异面直线CB与DE所成的角,在Rt△AED中,求解即可.
(2)所求问题实际是将△ACD(及其内部)绕AE所在直线旋转一周形成一几何体的体积是两圆锥的体积之差.求解即可.
解答 解:(1)因为CB∥DA,AE⊥DE垂直于圆AE⊥DE所在平面,所以AE⊥DE,
所以,∠ADE为异面直线CB与DE所成的角 …2分
在Rt△AED中,AE=1,DA=2,所以$sin∠ADE=\frac{1}{2}$,得$∠ADE=\frac{π}{6}$,
即异面直线CB与DE所成的角为$\frac{π}{6}$.…5分
(2)由题意知,将△ACD(及其内部)绕AE所在直线旋转一周形成一几何体的体积是两圆锥的体积之差.
因为异面直线CB与DE所成的角为$\frac{π}{6}$,且CB∥DA,所以$∠ADE=\frac{π}{6}$,…7分
又因为AE=1,所以,在Rt△AED中,$DE=\sqrt{3}$,DA=2…9分
因为CE为圆O的直径,所以$∠CDE=\frac{π}{2}$,
在Rt△CDE中,CD=DA=2,$DE=\sqrt{3}$,所以$CE=\sqrt{7}$…10分
所以该几何体的体积$V=\frac{1}{3}π•C{E^2}•AE-\frac{1}{3}π•D{E^2}•AE=\frac{4}{3}π$…12分.
点评 本题考查几何体的体积的求法,异面直线所成角的求法,考查计算能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 喜爱打篮球 | 不喜爱打篮球 | 合计 | |
| 男生 | 5 | ||
| 女生 | 10 | ||
| 合计 | 50 |
| p(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | c>a>b | C. | b>a>c | D. | b>c>a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 九五折 | B. | 九折 | C. | 八五折 | D. | 八折 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com