7£®Èçͼ£¬¾ØÐÎABCDÖУ¬AB=2£¬BC=4£¬ÒÔ¾ØÐÎABCDµÄÖÐÐÄΪԭµã£¬¹ý¾ØÐÎABCDµÄÖÐÐÄÆ½ÐÐÓÚBCµÄÖ±ÏßΪxÖᣬ½¨Á¢Ö±½Ç×ø±êϵ£¬
£¨1£©Çóµ½Ö±ÏßAD¡¢BCµÄ¾àÀëÖ®»ýΪ1µÄ¶¯µãPµÄ¹ì¼££»
£¨2£©Èô¶¯µãP·Ö±ðµ½Ïß¶ÎAB¡¢CDÖеãM¡¢NµÄ¾àÀëÖ®»ýΪ4£¬Ç󶯵ãPµÄ¹ì¼£·½³Ì£¬²¢Ö¸³öÇúÏßµÄÐÔÖÊ£¨¶Ô³ÆÐÔ¡¢¶¥µã¡¢·¶Î§£©£»
£¨3£©ÒÑÖªÆ½ÃæÉϵÄÇúÏßC¼°µãP£¬ÔÚCÉÏÈÎȡһµãQ£¬Ïß¶ÎPQ³¤¶ÈµÄ×îСֵ³ÆÎªµãPµ½ÇúÏßCµÄ¾àÀ룮Èô¶¯µãPµ½Ïß¶ÎABµÄ¾àÀëÓëÉäÏßCDµÄ¾àÀëÖ®»ýΪ4£¬Ç󶯵ãPµÄ¹ì¼£·½³Ì£¬²¢×÷³ö¶¯µãPµÄ´óÖ¹켣£®

·ÖÎö £¨1£©ÀûÓõ½Ö±ÏßAD¡¢BCµÄ¾àÀëÖ®»ýΪ1£¬½¨Á¢·½³Ì£¬¼´¿ÉÇó³ö¶¯µãPµÄ¹ì¼££»
£¨2£©$\sqrt{£¨x+2£©^{2}+{y}^{2}}$•$\sqrt{£¨x-2£©^{2}+{y}^{2}}$=4£¬»¯¼ò¿ÉµÃ½áÂÛ£»
£¨3£©Í¬Ê±´Ó¼¸ºÎºÍ´úÊý½Ç¶È½øÐзÖÎö£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÉèP£¨x£¬y£©£¬Ôò|y-1||y+1|=1¡­2·Ö
»¯¼òµÃy=¡À$\sqrt{2}$»òy=0£®
¹Ê¶¯µãPµÄ¹ì¼£ÎªÈýÌõƽÐÐÏߣ»¡­4·Ö
£¨2£©$\sqrt{£¨x+2£©^{2}+{y}^{2}}$•$\sqrt{£¨x-2£©^{2}+{y}^{2}}$=4£¬
»¯¼òµÃ $£¨\sqrt{{x}^{2}+1}-2£©^{2}+{y}^{2}=1$
¶Ô³ÆÐÔ£º¹ØÓÚÔ­µã¡¢x¡¢yÖá¶Ô³Æ£»¡­6·Ö
¶¥µã£º£¨2$\sqrt{2}$£¬0£©£¬£¨-2$\sqrt{2}$£¬0£©£¬£¨0£¬0£©£»¡­8·Ö
·¶Î§£º|x|¡Ü2$\sqrt{2}$£¬|y|¡Ü1¡­10·Ö
£¨3£©Í¬Ê±´Ó¼¸ºÎºÍ´úÊý½Ç¶È½øÐзÖÎö
µ±y£¼-1ʱ£¬y=-1-$\sqrt{4\sqrt{{x}^{2}+1}-{x}^{2}-4}$£¬¡­12·Ö
µ±-1¡Üy¡Ü1ʱ£¬x=¡À2$\sqrt{2}$»òx=0£¬¡­14·Ö
µ±y£¾1ʱ£¬y=1+$\sqrt{\frac{16}{£¨x-2£©^{2}}-£¨x+2£©^{2}}$£¬¡­16·Ö
×÷¹ì¼£´óÖÂÈçͼ£®·ÖÈý¸öÇøÓò¸ø·Ö£º
¢ÙÔÚÖ±Ïßy=-1µÄÏ·½£ºÁ½¶ÎÇúÏߣ»
¢ÚÔÚÁ½Ö±Ïßy=-1£¬y=1Ö®¼ä£ºÈýÌõƽÐÐÏߣ»
¢ÛÔÚÖ±Ïßy=1µÄÉÏ·½£ºÈýÌõÇúÏߣ®¡­18·Ö£®

µãÆÀ ±¾Ì⿼²é¹ì¼£·½³Ì£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬È·¶¨¹ì¼£·½³ÌÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÔÚÈýÀâÖùABC-A1B1C1ÖУ¬²àÀâBB1¡Íµ×ÃæA1B1C1£¬DΪAC µÄÖе㣬A1B1=BB1=2£¬A1C1=BC1£¬¡ÏA1C1B=60¡ã£®
£¨¢ñ£©ÇóÖ¤£ºAB1¡ÎÆ½ÃæBDC1£»
£¨¢ò£©Çó¶àÃæÌåA1B1C1DBAµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=-1+5£¨x-1£©-C${\;}_{5}^{2}$£¨x-1£©2+C${\;}_{5}^{3}$£¨x-1£©3-5£¨x-1£©4+£¨x-1£©5£¬Èôf£¨a£©=32£¬ÔòʵÊýaµÄֵΪ4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®É躯Êýfn£¨x£©=xn+ax+b£¨n¡ÊN*£¬a£¬b¡ÊR£©£®
£¨1£©Éèn¡Ý2£¬a=1£¬b=-1£¬Ö¤Ã÷£ºfn£¨x£©ÔÚÇø¼ä£¨$\frac{1}{2}$£¬1£©ÄÚ´æÔÚΨһµÄÁãµã£®
£¨2£©Éèn=2£¬Èô¶ÔÈÎÒâx1£¬x2¡Ê[-1£¬1]£¬ÓÐ|f£¨x1£©-f£¨x2£©|¡Ü4£¬ÇóaµÄȡֵ·¶Î§£®
£¨3£©ÔÚ£¨1£©Ìõ¼þÏ£¬Éèfn£¨x£©ÔÚ£¨$\frac{1}{2}$£¬1£©ÄÚÁãµã£¬ÊÔ˵Ã÷ÊýÁÐx2£¬x3£¬¡­£¬xnµÄÔö¼õÐÔ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚ¼«×ø±êϵÖУ¬¶¯µãM´ÓM0£¨1£¬0£©³ö·¢£¬Ñؼ«Öáox·½Ïò×÷ÔÈËÙÖ±ÏßÔ˶¯£¬ËÙ¶ÈΪ3Ã×/Ã룬ͬʱ¼«ÖáoxÈÆ¼«µão°´ÄæÊ±Õë·½Ïò×÷µÈ½ÇËÙ¶ÈÐýת£¬½ÇËÙ¶ÈΪ2Ã×/Ã룮Ôò¶¯µãMµÄ¼«×ø±ê·½³Ì¦Ñ=1+$\frac{3}{2}$¦È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬±ß³¤Îª2µÄÕý·½ÐÎABCDËùÔÚÆ½ÃæÓëÔ²OËùÔÚÆ½ÃæÏཻÓÚCD£¬CEΪԲOµÄÖ±¾¶£¬Ïß¶ÎCDΪԲOµÄÏÒ£¬AE´¹Ö±ÓÚÔ²OËùÔÚÆ½Ã棬ÇÒAE=1
£¨1£©ÇóÒìÃæÖ±ÏßCBÓëDEËù³É½ÇµÄ´óС£»
£¨2£©½«¡÷ACD£¨¼°ÆäÄÚ²¿£©ÈÆAEËùÔÚÖ±ÏßÐýתһÖÜÐγÉÒ»¼¸ºÎÌ壬Çó¸Ã¼¸ºÎÌåÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¶ÔÓÚº¯Êýf£¨x£©=x3cos3£¨x+$\frac{¦Ð}{6}$£©£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©ÊÇÆæº¯ÊýÇÒÔÚ£¨-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{6}$£©ÉϵÝÔöB£®f£¨x£©ÊÇÆæº¯ÊýÇÒÔÚ£¨-$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{6}$£©Éϵݼõ
C£®f£¨x£©ÊÇżº¯ÊýÇÒÔÚ£¨0£¬$\frac{¦Ð}{6}$£©ÉϵÝÔöD£®f£¨x£©ÊÇżº¯ÊýÇÒÔÚ£¨0£¬$\frac{¦Ð}{6}$£©Éϵݼõ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®½«º¯Êýy=sinx-$\sqrt{3}$cosxµÄͼÏóÑØxÖáÏòÓÒÆ½ÒÆa¸öµ¥Î»£¨a£¾0£©£¬ËùµÃͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÔòaµÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{¦Ð}{6}$B£®$\frac{¦Ð}{2}$C£®$\frac{7¦Ð}{6}$D£®$\frac{¦Ð}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖª£ºa?¦Á£¬b?¦Á£¬ÇÒa¡Îb£¬ÇóÖ¤£ºa¡Î¦Á

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸