精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=-1+5(x-1)-C${\;}_{5}^{2}$(x-1)2+C${\;}_{5}^{3}$(x-1)3-5(x-1)4+(x-1)5,若f(a)=32,则实数a的值为4.

分析 利用二项式定理化简函数,再利用f(a)=32,求实数a的值.

解答 解:f(x)=-1+5(x-1)-C${\;}_{5}^{2}$(x-1)2+C${\;}_{5}^{3}$(x-1)3-5(x-1)4+(x-1)5=(-1+x-1)5=(x-2)5
因为f(a)=32,
所以(a-2)5=32,
所以a=4.
故答案为:4.

点评 本题考查二项式定理,考查学生的计算能力,正确化简函数是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.点M(x,y)的函数y=-2x+8的图象上,当x∈[2,3]时,求:
(1)$\frac{y}{x}$的最大值和最小值;
(2)$\frac{y+1}{x+1}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知随机变量ξ的分布列是
ξ-102
P$\frac{sinα}{4}$$\frac{sinα}{4}$cosα
其中$α∈({0,\frac{π}{2}})$,则Eξ=(  )
A.$2cosα-\frac{1}{4}sinα$B.$cosα+\frac{1}{2}sinα$C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“序数”指每个数字比其左边的数字大的自然数(如1246),在两位的“序数”中任取一个数比36大的概率是(  )
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=loga(2+x),g(x)=loga(2-x)(a>0且a≠1),则F(x)=f(x)+g(x),G(x)=f(x)-g(x)的奇偶性是偶函数,奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若一个正实数能写成$\sqrt{n+1}$+$\sqrt{n}$(n∈N*)的形式,则称其为“兄弟数”,求证:
(1)若x为“兄弟数”,则x2也为“兄弟数”;
(2)若x为“兄弟数”,k是给定的正奇数,则xk也为“兄弟数”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.己知集合A={x|x2-2x>0},B={x||x|<$\sqrt{5}$},则(  )
A.A∪B=RB.A∩B=∅C.A?BD.A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,矩形ABCD中,AB=2,BC=4,以矩形ABCD的中心为原点,过矩形ABCD的中心平行于BC的直线为x轴,建立直角坐标系,
(1)求到直线AD、BC的距离之积为1的动点P的轨迹;
(2)若动点P分别到线段AB、CD中点M、N的距离之积为4,求动点P的轨迹方程,并指出曲线的性质(对称性、顶点、范围);
(3)已知平面上的曲线C及点P,在C上任取一点Q,线段PQ长度的最小值称为点P到曲线C的距离.若动点P到线段AB的距离与射线CD的距离之积为4,求动点P的轨迹方程,并作出动点P的大致轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).
(Ⅰ)求抛物线的标准方程;
(Ⅱ)设直线l:y=kx+t与圆x2+(y+1)2=1相切,且与抛物线交于不同的两点M,N,若△MON的面积为4,求直线l的方程.

查看答案和解析>>

同步练习册答案