精英家教网 > 高中数学 > 题目详情
20.掷两颗骰子得两数,则事件“两数之和为5”的概率为$\frac{1}{9}$.

分析 本题是一个求概率的问题,考查事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”这是一个古典概率模型,求出所有的基本事件数N与事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”包含的基本事件数N,再由公式$\frac{n}{N}$求出概率得到答案.

解答 解:抛掷两颗骰子所出现的不同结果数是6×6=36
事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件有(1,4),(2,3),(3,2),(4,1)共四种
故事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”的概率是$\frac{4}{36}=\frac{1}{9}$,
故答案为:$\frac{1}{9}$.

点评 本题是一个古典概率模型问题,解题的关键是理解事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”,由列举法计算出事件所包含的基本事件数,判断出概率模型,理解求解公式$\frac{n}{N}$是本题的重点,正确求出事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件数是本题的难点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1(a>b>0),离心率为$\frac{\sqrt{2}}{2}$,焦点F1(0,-c),F2(0,c),过F1的直线交椭圆于M,N两点,且△F2MN的周长为8.
(1)求椭圆方程;
(2)与y轴不重合的直线l与y轴交与点P(0,m)(m≠0),与椭圆C交于相异两点A,B,且$\overrightarrow{AP}$=λ$\overrightarrow{PB}$,若$\overrightarrow{OA}$+λ$\overrightarrow{OB}$=4$\overrightarrow{OP}$,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=mlnx+nx(m、,n∈R),曲线y=f(x)在点(1,f(1))处的切线方程为x-2y-2=0.(1)m+n=$\frac{1}{2}$;(2)若x>1时,f(x)+$\frac{k}{x}$<0恒成立,则实数k的取值范围是$(-∞,\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,|$\overrightarrow{b}$|=1,且对任意实数x,不等式|$\overrightarrow{a}$+x$\overrightarrow{b}$|≥|$\overrightarrow{a}$+$\overrightarrow{b}$|恒成立,则|$\overrightarrow{a}$|=(  )
A.$\sqrt{2}$B.1C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数fn(x)=xn+ax+b(n∈N*,a,b∈R).
(1)设n≥2,a=1,b=-1,证明:fn(x)在区间($\frac{1}{2}$,1)内存在唯一的零点.
(2)设n=2,若对任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,求a的取值范围.
(3)在(1)条件下,设fn(x)在($\frac{1}{2}$,1)内零点,试说明数列x2,x3,…,xn的增减性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在圆锥PO中,已知高PO=2,底面圆的半径为4,M为母线PB上一点;根据圆锥曲线的定义,下列四个图中的截面边界曲线分别为圆、椭圆、双曲线及抛物线,下面四个命题,正确的个数为(  )   
①圆的面积为4π;
②椭圆的长轴为$\sqrt{37}$;
③双曲线两渐近线的夹角为π-arcsin$\frac{4}{5}$;
④抛物线中焦点到准线的距离为$\frac{{4\sqrt{5}}}{5}$.
A.1 个B.2 个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,边长为2的正方形ABCD所在平面与圆O所在平面相交于CD,CE为圆O的直径,线段CD为圆O的弦,AE垂直于圆O所在平面,且AE=1
(1)求异面直线CB与DE所成角的大小;
(2)将△ACD(及其内部)绕AE所在直线旋转一周形成一几何体,求该几何体体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点C在线段AB上,且|$\overrightarrow{AC}$|=$\frac{5}{2}$|$\overrightarrow{CB}$|,则$\overrightarrow{BC}$=k$\overrightarrow{AB}$,则k的值是(  )
A.$\frac{5}{7}$B.-$\frac{5}{7}$C.-$\frac{2}{7}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.变量x,y的散点图如图所示,那么x,y之间的样本相关系数r最接近的值为(  )
A.1B.-0.5C.0D.0.5

查看答案和解析>>

同步练习册答案