分析 (1)根据二次函数f(x)的最小值为1,且f(0)=f(2)可得对称轴为x=1,可设f(x)=a(x-1)2+1,由f(0)=3,求出a的值即可;
(2)分类讨论f(x)的单调性,根据单调性求出最值.
解答 解:(1)由f(0)=f(2)=3知,对称轴为x=1,又因为最小值为2,
所以设f(x)=a(x-1)2+2,f(0)=3,得a=1,
所以f(x)=(x-1)2+2;
(2)由(1)知,对称轴为x=1,
当t+1≤1时,即t≤0时,$f{(x)_{min}}=f(t+1)={t^2}+2$;
当t<1<t+1时,即0<t<1时,f(x)min=f(1)=2;
当t≥1时,$f{(x)_{min}}=f(t)={t^2}-2t+3$;
综上所述,$f{(x)_{min}}=\left\{\begin{array}{l}{t^2}+2,\;t≤0\\ 2,\;0<t<1\\{t^2}-2t+3,\;t≥1\end{array}\right.$.
点评 本题主要考查了二次函数的性质,以及二次函数在闭区间上的最值,同考查了分类讨论的数学思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | {x=-1,y=2} | B. | (-1,2) | C. | {-1,2} | D. | {(-1,2)} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1:1 | B. | 3:1 | C. | 9:1 | D. | 1:9 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1,1 | B. | 1,-1 | C. | -1,1 | D. | -1,-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{3}}{3}$ | B. | 2$\sqrt{3}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{36}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com