分析 由正余弦定理和题意可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-ac}{2ac}$,由基本不等式可得.
解答 解:∵△ABC中,sin2B=sinAsinC,
∴由正弦定理可得b2=ac,
再由余弦定理可得cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$
=$\frac{{a}^{2}+{c}^{2}-ac}{2ac}$≥$\frac{2ac-ac}{2ac}$=$\frac{1}{2}$,
当且仅当a=c时取等号.
故cosB的最小值为$\frac{1}{2}$.
点评 本题考查正余弦定理解三角形,涉及基本不等式求最值,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | 当x>0且x≠1时,$lgx+\frac{1}{lgx}≥2$ | B. | 当x>0时,$\sqrt{x}+\frac{1}{{\sqrt{x}}}≥2$ | ||
| C. | 当x≥3时,$x+\frac{1}{x}$的最小值是2 | D. | 当0<x≤1时,$x-\frac{1}{x}$无最大值 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{2}}{3}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{\sqrt{6}}{4}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,1] | B. | (-∞,1] | C. | [1,3) | D. | (3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com