分析 (1)设获得利润为f(x)=200x-($\frac{1}{2}{x}^{2}$-200x+80000)=$-\frac{1}{2}(x-400)^{2}$,x∈[200,300].再利用二次函数的单调性即可得出.
(2)设每吨的平均处理成本为g(x),
①x∈[120,144)时,g(x)=$\frac{\frac{1}{3}{x}^{3}-80{x}^{2}+5040x}{x}$=$\frac{1}{3}{x}^{2}-80x$+5040=$\frac{1}{3}$(x-120)2+240.利用二次函数的单调性即可得出最小值.
②①x∈[144,500]时,g(x)=$\frac{\frac{1}{2}{x}^{2}-200x+80000}{x}$=$\frac{x}{2}$+$\frac{80000}{x}$-200,利用基本不等式的性质即可得出最小值.
解答 解:(1)设获得利润为f(x)=200x-($\frac{1}{2}{x}^{2}$-200x+80000)=$-\frac{1}{2}(x-400)^{2}$,x∈[200,300].
f(200)=-20000,f(3000)=-5000.
∵f(x)在x∈[200,300]上单调递增,∴f(x)∈[-5000,-20000].
可知不获利,则国家每月至少需要补贴20000元才能使该项目不亏损.
(2)设每吨的平均处理成本为g(x),
①x∈[120,144)时,g(x)=$\frac{\frac{1}{3}{x}^{3}-80{x}^{2}+5040x}{x}$=$\frac{1}{3}{x}^{2}-80x$+5040=$\frac{1}{3}$(x-120)2+240.
可得函数g(x)在x∈[120,144)时单调递增,因此x=120时,g(x)取得最小值,g(120)=240.
②①x∈[144,500]时,g(x)=$\frac{\frac{1}{2}{x}^{2}-200x+80000}{x}$=$\frac{x}{2}$+$\frac{80000}{x}$-200≥$2\sqrt{\frac{x}{2}×\frac{80000}{x}}$-200=200.
当且仅当x=200时取等号.
即可得函数g(x)在x∈[144,500]时,x=200时,g(x)取得最小值,g(200)=200.
综上可得:该项目每月处理量为200吨时,才能使每吨的平均处理成本最低.
点评 本题考查了二次函数的单调性、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 年份代码x | 1 | 2 | 3 | 4 | 5 |
| 第三产业比重(%) | 44.3 | 45.5 | 46.9 | 48.1 | 50.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com