19£®¸ù¾Ý¡°2015Äê¹úÃñ¾­¼ÃºÍÉç»á·¢Õ¹Í³¼Æ¹«±¨¡±Öй«²¼µÄÊý¾Ý£¬´Ó2011 Äêµ½2015 Ä꣬ÎÒ¹úµÄµÚÈý²úÒµÔÚGDPÖеıÈÖØÈçÏ£º
Äê·Ý20112012201320142015
Äê·Ý´úÂëx12345
µÚÈý²úÒµ±ÈÖØ£¨%£©44.345.546.948.150.5
£¨¢ñ£©ÔÚËù¸ø×ø±êϵÖÐ×÷³öÊý¾Ý¶ÔÓ¦µÄÉ¢µãͼ£»
£¨¢ò£©½¨Á¢µÚÈý²úÒµÔÚGDPÖеıÈÖØy¹ØÓÚÄê·Ý´úÂëxµÄ»Ø¹é·½³Ì£»
£¨¢ó£©°´ÕÕµ±Ç°µÄ±ä»¯Ç÷ÊÆ£¬Ô¤²â2017 ÄêÎÒ¹úµÚÈý²úÒµÔÚGDPÖеıÈÖØ£®
¸½×¢£º»Ø¹éÖ±Ïß·½³Ì$\widehaty=\widehata+\widehatbx$ÖеÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ¹«Ê½·Ö±ðΪ£º$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{£¨\overline x£©}^2}}}=\frac{{\sum_{i=1}^n{£¨{x_i}-\overline x£©£¨{y_i}-\overline y}£©}}{{\sum_{i=1}^n{{{£¨{x_i}-\overline x£©}^2}}}}$£¬$\widehata=\overline y-\widehatb\overline x$£¬$\sum_{i=1}^5{{x_i}{y_i}}=720.9$£®

·ÖÎö £¨1£©ÀûÓÃÌâÖÐËù¸øµÄÊý¾ÝÃèµã»­³öÉ¢µãͼ¼´¿É£»
£¨2£©Ê×ÏÈÇóµÃÑù±¾ÖÐÐĵ㣬ȻºóÀûÓûع鷽³Ì¼ÆË㹫ʽÇó½â¼´¿É£»
£¨3£©ÀûÓûع鷽³ÌµÄÔ¤²â×÷ÓýáºÏ£¨2£©ÖеĽá¹û½øÐÐÔ¤²â¼´¿É£®

½â´ð ½â£º£¨1£©¸ù¾ÝËù¸øµÄÊý¾Ý»æÖÆÉ¢µãͼÈçͼËùʾ£º

£¨2£©½áºÏËù¸øÊý¾Ý¼ÆËã¿ÉµÃ£º
$\overline{x}=\frac{1+2+3+4+5}{5}=3$£¬$\overline{y}=\frac{44.3+45.5+46.9+48.1+50.5}{5}=47.06$£¬
Ôò$\widehat{b}=\frac{\sum_{i=1}^{n=5}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{5}{£¨{x}_{i}-\overline{x}£©}^{2}}=1.5$£¬$\widehat{a}=\overline{y}-\widehat{b}\overline{x}=42.56$£¬
¹Ê»Ø¹é·½³ÌΪ£º$\widehat{y}=\widehat{b}x+\hat{a}=1.5x+42.56$£®
£¨3£©´úÈë2017ÄêµÄÄê·Ý´úÂëx=7¿ÉµÃ£º$\hat{y}=1.5¡Á7+42.56=53.06$£¬
¹Ê°´ÕÕµ±Ç°µÄ±ä»¯Ç÷ÊÆ£¬Ô¤²â2017 ÄêÎÒ¹úµÚÈý²úÒµÔÚGDPÖеıÈÖØ½«´ïµ½53.06%£®

µãÆÀ ±¾Ì⿼²é»Ø¹é·½³ÌµÄ¶¨Òå¼°ÆäÓ¦Óã¬É¢µãͼµÄ»æÖƵȣ¬Öص㿼²éѧÉú¶Ô»ù´¡¸ÅÄîµÄÀí½âºÍ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеÈÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªÏòÁ¿$\overrightarrow a=£¨x-1£¬3£©£¬\overrightarrow b=£¨2£¬1£©$£¬Ôò$\overrightarrow a¡Í\overrightarrow b$µÄ³äÒªÌõ¼þÊÇx=$-\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬Èôa1+a5+a9=4¦Ð£¬Ôòsina5µÄֵΪ£¨¡¡¡¡£©
A£®$-\frac{1}{2}$B£®$-\frac{{\sqrt{3}}}{2}$C£®$\frac{{\sqrt{3}}}{2}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁÐÃüÌ⣺
¢Ù¡°x=2¡±ÊÇ¡°x2-4x+4=0¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ£»
¢Ú¡°Ô²Ðĵ½Ö±ÏߵľàÀëµÈÓÚ°ë¾¶¡±ÊÇ¡°ÕâÌõÖ±ÏßΪԲµÄÇÐÏß¡±µÄ³ä·Ö±ØÒªÌõ¼þ£»
¢Û¡°sin ¦Á=sin ¦Â¡±ÊÇ¡°¦Á=¦Â¡±µÄ³äÒªÌõ¼þ£»
¢Ü¡°ab¡Ù0¡±ÊÇ¡°a¡Ù0¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£®
ÆäÖÐÎªÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÛB£®¢Ú¢ÜC£®¢Ú¢ÛD£®¢Ù¢Û

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÉèF1£¬F2·Ö±ðΪÍÖÔ²${C_1}£º\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1$£¨a1£¾b1£¾0£©ÓëË«ÇúÏß${C_2}£º\frac{x^2}{a_1^2}-\frac{y^2}{b_1^2}=1$£¨a2£¾b2£¾0£©µÄ¹«¹²½¹µã£¬ËüÃÇÔÚµÚÒ»ÏóÏÞÄÚ½»ÓÚµãM£¬$¡Ï{F_1}M{F_2}={90^0}$£¬ÈôÍÖÔ²µÄÀëÐÄÂÊ${e_1}¡Ê[\frac{3}{4}£¬\frac{{2\sqrt{2}}}{3}]$£¬ÔòË«ÇúÏßC2µÄÀëÐÄÂÊe2µÄȡֵ·¶Î§Îª$[\frac{{2\sqrt{14}}}{7}£¬\sqrt{2}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÎªÁ˱£»¤»·¾³£¬·¢Õ¹µÍ̼¾­¼Ã£¬Ä³µ¥Î»ÔÚ¹ú¼Ò¿ÆÑв¿ÃŵÄÖ§³ÖÏ£¬½øÐм¼Êõ¹¥¹Ø£¬ÐÂÉÏÁ˰ѶþÑõ»¯Ì¼´¦Àíת»¯ÎªÒ»ÖÖ¿ÉÀûÓõϝ¹¤²úÆ·µÄÏîÄ¿£¬¾­²âË㣬¸ÃÏîĿԴ¦Àí³É±¾y£¨Ôª£©ÓëÔ´¦ÀíÁ¿x£¨¶Ö£©Ö®¼äµÄº¯Êý¹ØÏµ¿É½üËÆµØ±íʾΪy=$\left\{\begin{array}{l}{\frac{1}{3}{x}^{3}-80{x}^{2}+5040x£¬x¡Ê[120£¬144£©}\\{\frac{1}{2}{x}^{2}-200x+80000£¬x¡Ê[144£¬500]}\end{array}\right.$ÇÒÿ´¦ÀíÒ»¶Ö¶þÑõ»¯Ì¼µÃµ½¿ÉÀûÓõϝ¹¤²úÆ·¼ÛֵΪ200Ôª£¬Èô¸ÃÏîÄ¿²»»ñÀû£¬¹ú¼Ò½«¸øÓè²¹³¥£®
£¨1£©µ±x¡Ê[200£¬300]ʱ£¬ÅжϸÃÏîÄ¿ÄÜ·ñ»ñÀû£¿Èç¹û»ñÀû£¬Çó³ö×î´óÀûÈó£»Èç¹û²»»ñÀû£¬Ôò¹ú¼ÒÿÔÂÖÁÉÙÐèÒª²¹Ìù¶àÉÙÔª²ÅÄÜʹ¸ÃÏîÄ¿²»¿÷Ëð£¿
£¨2£©¸ÃÏîĿÿÔ´¦ÀíÁ¿Îª¶àÉÙ¶Öʱ£¬²ÅÄÜʹÿ¶ÖµÄƽ¾ù´¦Àí³É±¾×îµÍ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖªÔڵȲîÊýÁÐ{an}ÖУ¬a4=7£¬a6=13£¬Ôòa8=£¨¡¡¡¡£©
A£®18B£®19C£®17D£®16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÒÑÖª$\overrightarrow{a}$=£¨¦Ë£¬2£©£¬$\overrightarrow{b}$=£¨3£¬6£©£¬ÇÒ$\overrightarrow{a}$Óë$\overrightarrow{b}$µÄ¼Ð½ÇΪÈñ½Ç£¬Ôò¦ËµÄȡֵ·¶Î§ÊǦˣ¾-4ÇҦˡÙ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èôº¯Êýf£¨x£©=$\left\{\begin{array}{l}£¨2b-1£©•{3^x}-b£¬x£¾0\\-{x^2}+£¨2-b£©x£¬x¡Ü0\end{array}$ÔÚRÉÏΪÔöº¯Êý£¬ÔòʵÊýbµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®$£¨\frac{1}{2}£¬2]$B£®[1£¬2]C£®£¨1£¬2]D£®$£¨\frac{1}{2}£¬2£©$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸