| A. | 8 | B. | 7 | C. | 6 | D. | 5 |
分析 根据条件关系,求出函数f(x)的表达式,作出f(x)与g(x)的图象,利用数形结合判定两个函数图象的交点即可的结论.
解答
解:∵对任意x∈R,有f(x+2)=2f(x);
若x∈[1,3],则x-2∈[-1,1],此时f(x)=2f(x-2)=2$\sqrt{1-(x-2)^{2}}$,
当x∈[-3,-1],则x+2∈[-1,1],此时f(x)=f(x+2)=$\frac{1}{2}$$\sqrt{1-(x+2)^{2}}$,
作出函数f(x)与g(x)的图象,
由图象可知,两个图象有6个交点,
即函数y=f(x)-g(x)在区间[-3,3]上零点的个数是6个,
故选:C
点评 此题考查了函数与方程的知识,考查了转化与化归和数形结合的数学思想,由函数的三条基本性质进行分解,从而确定出函数f(x)在[-3,3]上的分段函数解析式,作出函数图象是本题的突破点.难度较大.
科目:高中数学 来源: 题型:选择题
| A. | b<c<a | B. | c<a<b | C. | c<b<a | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| PM 2.5日均值m(微克/立方米) | 空气质量等级 |
| m<35 | 一级 |
| 35≤m≤75 | 二级 |
| m>75 | 超标 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com