精英家教网 > 高中数学 > 题目详情
若函数f(x)=x2-ex-ax在R上存在单调递增区间,则实数a的取值范围是
 
考点:利用导数研究函数的单调性
专题:函数的性质及应用,导数的综合应用
分析:根据题意可得a<2x-ex有解,转化为g(x)=2x-ex,a<g(x)max,利用导数求出最值即可.
解答: 解:∵函数f(x)=x2-ex-ax,
∴f′(x)=2x-ex-a,
∵函数f(x)=x2-ex-ax在R上存在单调递增区间,
∴f′(x)=2x-ex-a>0,
即a<2x-ex有解,
令g′(x)=2-ex
g′(x)=2-ex=0,x=ln2,
g′(x)=2-ex>0,x<ln2,
g′(x)=2-ex<0,x>ln2
∴当x=ln2时,g(x)max=2ln2-2,
∴a<2ln2-2即可.
故答案为:(-∞,2ln2-2)
点评:本题考察了导数在解决函数最值,单调性,不等式成立问题中的应用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若正数x,y满足x+3y=5xy,则3x+4y的最小值是(  )
A、
24
5
B、
28
5
C、6
D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

若椭圆C1
x2
a2
+
y2
b2
=1(a>b>0),过点Q(1,
1
2
)作圆C2:x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l与圆C2相切于点P,且交椭圆C1于点M,N,求证:∠MON是钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知箱子里装有4张大小、形状都相同的卡片,标号分别为1,2,3,4
(1)从箱子中任取两张卡片,求两张卡片的标号之和不小于4的概率;
(2)从箱子中任意取出一张卡片记下它的标号m,然后再放回箱子中;第二次再从箱子中任取一张卡片,记下它的标号n,求使得幂函数f(x)=(m-n)x
m
n
的图象关于y轴对称的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.2]=-2.x0是函数f(x)=lnx-
2
x
的零点,则[x0]等于(  )
A、2B、1C、0D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

从4名女生和3名男生中选出3人参加三个不同的培训班,每个培训班一人.若这3人中至少有一名男生,则不同的选派方案共有
 
种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

下列几个图形中,可以表示函数关系y=f(x)的一个图是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的奇函数,且当x>0时,f(x)=x2-x-1;
(1)求f(x)的解析式;
(2)作出函数f(x)的图象(不用列表),并指出它的增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,AB=AC,BC的边长为2,则
BA
BC
的值为
 

查看答案和解析>>

同步练习册答案