精英家教网 > 高中数学 > 题目详情
14.一个容量为100的样本,其数据的分组与各组的频数如下:
组别[0,10)[10,20)[20,30)[30,40)[40,50)[50,60)[60,70]
频数1213241516137
则样本数据在[10,40)上的频率为0.52.

分析 由频率分布表求出样本数据在[10,40)上的频数,由此能求出样本数据在[10,40)上的频率.

解答 解:由频率分布表得:
样本数据在[10,40)上的频数为:
13+24+15=52,
∴样本数据在[10,40)上的频率为:$\frac{52}{100}$=0.52.
故答案为:0.52.

点评 本题考查频率的求法,是基础题,解题时要认真审题,注意频率分布表的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A、B、C所对应的边分别为a、b、c,则“A≤B”是sinA≤sinB的(  )
A.充分必要条件B.充分不必要条件
C.必要不充分条件D.不充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=$\frac{x-1}{x-a}$在区间[3,+∞)上是减函数,则a的取值范围是(  )
A.[1,3)B.(1,3)C.(1,3]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知AB是圆C:(x+2)2+(y-l)2=$\frac{2}{5}$的一条直径,若楠圆x2+4y2=4b2(b∈R)经过 A、B 两点,则该椭圆的方程是$\frac{{x}^{2}}{\frac{216}{25}}+\frac{{y}^{2}}{\frac{54}{25}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=\sqrt{2}cosα\\ y=sinα\end{array}\right.$(α为参数),以原点O为极点,x轴的正半轴为级轴,建立极坐标系,曲线C2的极坐标方程ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$
(I)求曲线C1的普通方程和曲线C2的直角坐标方程;
(Ⅱ)设P为曲线C1上的动点,求点P到曲线C2上的距离的最小值的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取200袋检查,若第一组抽出的号码是7,则第四十一组抽出的号码为607.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知平面非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,若对任意平面向量$\overrightarrow{c}$,都有($\overrightarrow{c}$-$\overrightarrow{a}$)•(2$\overrightarrow{c}$-$\overrightarrow{b}$)≥m$\overrightarrow{a}$•$\overrightarrow{b}$恒成立,则实数m的取值范围是(-∞,-$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设全集为U=R,集合A={x||x|≤2},B={x|$\frac{1}{x-1}$>0},则(∁UA)∩B=(  )
A.[-2,1]B.(2,+∞)C.(1,2]D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.由小于8的所有素数组成的集合为{2,3,5,7}.

查看答案和解析>>

同步练习册答案